Παραγοντοποίηση Τριωνύμου

 

ΑΛΓΕΒΡΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

Παραγοντοποίηση Τριωνύμου
Για να κάνουμε ένα τριώνυμο γινόμενο αρκεί να βρούμε τις ρίζες του χ1 , χ2 και να το γράψουμε α(χ-χ1)(χ-χ2)

Την αλγεβρική παράσταση

    \[\alpha x^2+\beta x +\gamma\]

συνήθως την ονομάζουμε τριώνυμο και νομίζω ότι είναι προφανής ο λόγος αφού όπως βλέπουμε αποτελείται από τρεις μόνο όρους. Τον δευτεροβάθμιο όρο «αx2«, τον πρωτοβάθμιο όρο «βx» και από τον σταθερό όρο «γ». Για το τριώνυμο έχουμε ξαναμιλήσει σε προηγούμενο άρθρο κι έχουμε ασχοληθεί με το πως μπορούμε να βρούμε τις ρίζες του, θυμίζουμε ότι ρίζες του τριωνύμου είναι οι λύσεις της εξίσωσης

    \[\alpha x^2+\beta x +\gamma=0\]

(αν θέλετε να το διαβάσετε αναλυτικά κάντε κλικ εδώ αν θέλετε να θυμηθείτε στα γρήγορα τη διαδικασία κάντε κλικ εδώ να δείτε τη μεθοδολογία).

Τώρα θα ασχοληθούμε με το πως μπορούμε να παραγοντοποιήσουμε ένα τριώνυμο δηλαδή με ποιο τρόπο μπορούμε να μετατρέψουμε ένα τριώνυμο σε γινόμενο. Για την παραγοντοποίηση γενικά έχουμε αναφερθεί προηγούμενα εδώ. Επειδή όμως στο σχολικό βιβλίο η παραγοντοποίηση του τριωνύμου παρουσιάζεται αρκετά αργότερα, δεν το είχαμε αναφέρει καθόλου τότε. Έφτασε λοιπόν η ώρα να ασχοληθούμε και με αυτό το θέμα.

Όταν λοιπόν για κάποιο λόγο χρειαστεί ένα τριώνυμο να το κάνουμε γινόμενο δεν έχουμε παρά να βρούμε τις ρίζες του έστω x1 και x2 και στη συνέχεια να χρησιμοποιήσουμε τον τύπο:

    \[\alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)\]

Ας δούμε ένα παράδειγμα: Έστω ότι θέλουμε να μετατρέψουμε σε γινόμενο το x^2+3x-4.

Πρώτα απ’ όλα πρέπει να βρούμε τις ρίζες του και για το λόγο αυτό λύνουμε την εξίσωση

    \[x^2+3x-4=0\]

.

Έχουμε \left.\begin{matrix} \alpha=1\\ \beta=3\\ \gamma=-4\end{matrix}\right\}\Rightarrow \Delta=\beta^2-4\alpha\gamma=3^2-4\cdot 1\cdot (-4)=9+16=25

οπότε οι ρίζες είναι

x_1,x_2=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-3\pm5}{2}\Rightarrow \left\{\begin{matrix}x_1=\frac{-3-5}{2}=-4\\x_2=\frac{-3+5}{2}=1\end{matrix}

Σύμφωνα με αυτά που αναφέραμε πιο πάνω παραγοντοποιούμε το τριώνυμο με τον τύπο και παίρνουμε

    \[x^2+3x-4=1[x-(-4)](x-1)=(x+4)(x-1)\]

θα δούμε και δύο ακόμη παραδείγματα γιατί πιθανόν να δημιουργήθηκαν απορίες σε ορισμένους από εσάς για το τι κάνουμε στην περίπτωση που δεν έχουμε ρίζες ή στην περίπτωση που το τριώνυμο έχει διακρίνουσα ίση με μηδέν.

Αν ένα τριώνυμο όπως για παράδειγμα το x2+x+1 έχει διακρίνουσα αρνητική (Δ=-3) τότε όπως γνωρίζουμε δεν έχει ρίζες κι έτσι δεν μετατρέπεται σε γινόμενο.

Ενώ αν μας δωθεί για παραγοντοποίηση ένα τριώνυμο όπως το 4x2-12x+9 θα έχουμε

\left.\begin{matrix}\alpha=4\\ \beta=-12\\ \gamma=9\end{matrix}\right\}\Rightarrow\Delta=144-4\cdot4\cdot9=144-144=0

πράγμα που σημαίνει ότι έχουμε δύο ρίζες μόνο που στην περίπτωση αυτή θα είναι ίσες μεταξύ τους. Πράγματι

    \[x_1=x_2=\frac{-\beta\pm 0}{2a}=\frac{12}{2\cdot4}=\frac{3}{2}\]

Έτσι χρησιμοποιώντας τον τύπο που δώσαμε παραπάνω παίρνουμε τελικά

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

το οποίο μάλλον θα ήταν πιο όμορφο αν το γράφαμε έτσι

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

    \[4x^2-12x+9=4(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=2^2(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=\left\{2(x-\frac{3}{2})\right\}^2\]

    \[4x^2-12x+9=(2x-3)^2\]

Παρατηρούμε λοιπόν ότι ο τύπος για την παραγοντοποίηση τριωνύμου «δουλεύει» και όταν Δ>0 (δύο ρίζες διαφορετικές) αλλά και όταν Δ=0 (δύο ρίζες ίσες). Αν και όπως βλέπουμε κι από το προηγούμενο ακριβώς παράδειγμα το4x^2-12x+9=(2x-3)^2 μας δείχνει ότι το τριώνυμο ήταν ταυτότητα αλλά δεν το είχαμε προσέξει. Αυτό όμως είναι κανόνας που ισχύει πάντα «όταν η διακρίνουσα ενός τριωνύμου είναι ίση με μηδέν το τριώνυμο είναι τέλειο τετράγωνο» κι επομένως θα ισχύει

    \[\alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2\]

Συνοψίζοντας λοιπόν όλα τα παραπάνω έχουμε:

 

Το τριώνυμο \alpha x^2+\beta x+\gamma

 

  • αν έχει Δ<0, δεν παραγοντοποιείται
  • αν έχει Δ=0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2
  • αν έχει Δ>0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)(x-x_2)

όπου x_1 , x_2 οι ρίζες του.

Εξισώσεις 2+ βαθμού

Στην Β΄ Γυμνασίου μάθαμε έναν αλγόριθμο (μεθοδολογία) για να επιλύουμε κάθε εξίσωση πρώτου βαθμού.
Τώρα στη Τρίτη τάξη θα δούμε πως μπορούμε κάτω από ορισμένες συνθήκες να βρούμε τις λύσεις και σε άλλες εξισώσεις μεγαλύτερου βαθμού. Η μέθοδος αυτή δεν αποδίδει πάντα, γι’ αυτό αργότερα θα την συμπληρώσουμε

πως μας βοηθά η παραγοντοποίηση στην επίλυση εξισώσεων δεύτερου βαθμού ή μεγαλύτερου.

Πριν όμως από αυτό θα πρέπει να δούμε μια σημαντική ιδιότητα:

    \[A \cdot\ B=0\Leftrightarrow \left \{ \begin{matrix} A=0\\ \eta\\ B=0 \end{matrix} \right.\]

Η οποία μας λέει ότι ένα γινόμενο είναι ίσο με μηδέν τότε και μόνο τότε αν τουλάχιστον ένας από τους παράγοντες του γινομένου είναι ίσος με μηδέν.

Να δούμε τώρα λύνοντας ένα παράδειγμα πως μπορούμε να εκμεταλλευτούμε τα παραπάνω για να βρούμε τις λύσεις σε μια εξίσωση 2ου βαθμού. Έστω λοιπόν ότι ψάχνουμε να βρούμε εκείνους τους αριθμούς που ικανοποιούν τη σχέση x^2-x=0. Αυτή είναι μια δευτεροβάθμια εξίσωση την οποία και θα μετατρέψω σε γινόμενο (με κάποια από τις μεθόδους παραγοντοποίησης που μάθαμε) με σκοπό να χρησιμοποιήσω την ιδιότητα που προαναφέραμε. Έτσι έχουμε

    \[x^2-x=0\Leftrightarrow\]

(βγάζουμε κοινό παράγοντα το x)

    \[x\cdot(x-1)=0\]

φτάσαμε λοιπόν στο σημείο να έχουμε ένα γινόμενο που είναι ίσο με το μηδέν. Το γινόμενο αυτό αποτελείται από δύο (πρωτοβάθμιους) παράγοντες τον x και τον x-1. Σύμφωνα με την ιδιότητα που αναφέραμε παραπάνω συμπεραίνουμε ότι τουλάχιστον ένας από αυτούς τους παράγοντες θα είναι ίσος με μηδέν. Δηλαδή θα ισχύει:

    \[\left \{ \begin{matrix} x=0\\ \eta\\ x-1=0\Leftrightarrow x=1 \end{matrix} \right.\]

Από τον τρόπο που λύθηκε το προηγούμενο παράδειγμα φαίνεται το ποια μέθοδο πρέπει ν’ ακολουθούμε για να επιλύσουμε μια εξίσωση που έχει βαθμό μεγαλύτερο του πρώτου:

[su_label style=»important»]Βήμα 1ο:[/su_label] Μεταφέρουμε όλους τους όρους στο α’ μέλος έτσι ώστε στο δεύτερο μέλος να είναι ίσο με μηδέν.

[su_label style=»success»]Βήμα 2ο:[/su_label] Μετατρέπουμε σε γινόμενο το α’ μέλος.

[su_label style=»warning»]Βήμα 3ο:[/su_label] Παίρνουμε κάθε παράγοντα του γινομένου ίσο με μηδέν.

[su_label style=»info»]Βήμα 4ο:[/su_label] Λύνουμε κάθε μια από τις εξισώσεις (1ου βαθμού) που προκύπτουν από το προηγούμενο βήμα.

 

 

 

 

Παραγοντοποίηση Τριωνύμου

Με ποιο τρόπο μετατρέπουμε σε γινόμενο ένα τριώνυμο; Τι ρόλο παίζουν οι ρίζες του τριωνύμου σε αυτή τη διαδικασία;

 

ΑΛΓΕΒΡΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

Παραγοντοποίηση Τριωνύμου
Για να κάνουμε ένα τριώνυμο γινόμενο αρκεί να βρούμε τις ρίζες του χ1 , χ2 και να το γράψουμε α(χ-χ1)(χ-χ2)

Την αλγεβρική παράσταση

    \[\alpha x^2+\beta x +\gamma\]

συνήθως την ονομάζουμε τριώνυμο και νομίζω ότι είναι προφανής ο λόγος αφού όπως βλέπουμε αποτελείται από τρεις μόνο όρους. Τον δευτεροβάθμιο όρο «αx2«, τον πρωτοβάθμιο όρο «βx» και από τον σταθερό όρο «γ». Για το τριώνυμο έχουμε ξαναμιλήσει σε προηγούμενο άρθρο κι έχουμε ασχοληθεί με το πως μπορούμε να βρούμε τις ρίζες του, θυμίζουμε ότι ρίζες του τριωνύμου είναι οι λύσεις της εξίσωσης

    \[\alpha x^2+\beta x +\gamma=0\]

  (αν θέλετε να το διαβάσετε αναλυτικά κάντε κλικ εδώ αν θέλετε να θυμηθείτε στα γρήγορα τη διαδικασία κάντε κλικ εδώ να δείτε τη μεθοδολογία).

Τώρα θα ασχοληθούμε με το πως μπορούμε να παραγοντοποιήσουμε ένα τριώνυμο δηλαδή με ποιο τρόπο μπορούμε να μετατρέψουμε ένα τριώνυμο σε γινόμενο. Για την παραγοντοποίηση γενικά έχουμε αναφερθεί προηγούμενα εδώ. Επειδή όμως στο σχολικό βιβλίο η παραγοντοποίηση του τριωνύμου παρουσιάζεται αρκετά αργότερα, δεν το είχαμε αναφέρει καθόλου τότε. Έφτασε λοιπόν η ώρα να ασχοληθούμε και με αυτό το θέμα.

Όταν λοιπόν για κάποιο λόγο χρειαστεί ένα τριώνυμο να το κάνουμε γινόμενο δεν έχουμε παρά να βρούμε τις ρίζες του έστω x1 και x2 και στη συνέχεια να χρησιμοποιήσουμε τον τύπο:

[su_note color=»#0972FB»]

    \[\alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)\]

[/su_note]

Ας δούμε ένα παράδειγμα: Έστω ότι θέλουμε να μετατρέψουμε σε γινόμενο το x^2+3x-4.

Πρώτα απ’ όλα πρέπει να βρούμε τις ρίζες του και για το λόγο αυτό λύνουμε την εξίσωση 

    \[x^2+3x-4=0\]

.

Έχουμε \left.\begin{matrix} \alpha=1\\ \beta=3\\ \gamma=-4\end{matrix}\right\}\Rightarrow \Delta=\beta^2-4\alpha\gamma=3^2-4\cdot 1\cdot (-4)=9+16=25

οπότε οι ρίζες είναι

x_1,x_2=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-3\pm5}{2}\Rightarrow \left\{\begin{matrix}x_1=\frac{-3-5}{2}=-4\\x_2=\frac{-3+5}{2}=1\end{matrix}

Σύμφωνα με αυτά που αναφέραμε πιο πάνω παραγοντοποιούμε το τριώνυμο με τον τύπο και παίρνουμε

    \[x^2+3x-4=1[x-(-4)](x-1)=(x+4)(x-1)\]

θα δούμε και δύο ακόμη παραδείγματα γιατί πιθανόν να δημιουργήθηκαν απορίες σε ορισμένους από εσάς για το τι κάνουμε στην περίπτωση που δεν έχουμε ρίζες ή στην περίπτωση που το τριώνυμο έχει διακρίνουσα ίση με μηδέν.

Αν ένα τριώνυμο όπως για παράδειγμα το x2+x+1 έχει διακρίνουσα αρνητική (Δ=-3) τότε όπως γνωρίζουμε δεν έχει ρίζες κι έτσι δεν μετατρέπεται σε γινόμενο.

Ενώ αν μας δωθεί  για παραγοντοποίηση ένα τριώνυμο όπως το 4x2-12x+9 θα έχουμε

\left.\begin{matrix}\alpha=4\\ \beta=-12\\ \gamma=9\end{matrix}\right\}\Rightarrow\Delta=144-4\cdot4\cdot9=144-144=0

πράγμα που σημαίνει ότι έχουμε δύο ρίζες μόνο που στην περίπτωση αυτή θα είναι ίσες μεταξύ τους. Πράγματι

    \[x_1=x_2=\frac{-\beta\pm 0}{2a}=\frac{12}{2\cdot4}=\frac{3}{2}\]

Έτσι χρησιμοποιώντας τον τύπο που δώσαμε παραπάνω παίρνουμε τελικά

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

το οποίο μάλλον θα ήταν πιο όμορφο αν το γράφαμε έτσι

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

    \[4x^2-12x+9=4(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=2^2(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=\left\{2(x-\frac{3}{2})\right\}^2\]

    \[4x^2-12x+9=(2x-3)^2\]

Παρατηρούμε λοιπόν ότι ο τύπος για την παραγοντοποίηση τριωνύμου «δουλεύει» και όταν Δ>0 (δύο ρίζες διαφορετικές) αλλά και όταν Δ=0 (δύο ρίζες ίσες). Αν και όπως βλέπουμε κι από το προηγούμενο ακριβώς παράδειγμα το4x^2-12x+9=(2x-3)^2 μας δείχνει ότι το τριώνυμο ήταν ταυτότητα αλλά δεν το είχαμε προσέξει. Αυτό όμως είναι κανόνας που ισχύει πάντα «όταν η διακρίνουσα ενός τριωνύμου είναι ίση με μηδέν το τριώνυμο έχει δύο ρίζες ‘ισες χ12« κι επομένως θα ισχύει

    \[\alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2\]

Συνοψίζοντας λοιπόν όλα τα παραπάνω έχουμε:

[su_box title=»Μετατροπή τριωνύμου σε γινόμενο» color=»#0972FB»]

Το τριώνυμο \alpha x^2+\beta x+\gamma

[su_list style=»arrow»]

  • αν έχει Δ<0, δεν παραγοντοποιείται
  • αν έχει Δ=0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2
  • αν έχει Δ>0, γίνεται  \alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)

όπου x_1 , x_2 οι ρίζες του.  [/su_list][/su_box]

Παραγοντοποίηση

Τι είναι η παραγοντοποίηση;

Παραγοντοποίηση είναι η μετατροπή ενός αριθμού, ή μιας αλγεβρικής παράστασης σε γινόμενο.

Γιά παράδειγμα μπορούμε να παραγοντοποιήσουμε τον αριθμό 12 και να τον γράψουμε 2.6, αφού 12=2.6. Οι αριθμοί 2 και 6 λέγονται παράγοντες (ή διαιρέτες) του 12. Με την ανάλυση αριθμού σε γινόμενο δεν θα ασχοληθούμε εδώ, αυτό το

Παραγοντοποίηση
Παραγοντοποίηση

κάναμε πολλά χρόνια πριν στο Δημοτικό και στη Α΄ Γυμνασίου (θυμηθείτε την ανάλυση ενός σύνθετου αριθμού σε γινόμενο πρώτων παραγόντων, όπου το 12 το γράφαμε 12=2^2\cdot 3 ). Στο άρθρο αυτό θα δούμε με ποιούς τρόπους μπορούμε μια αλγεβρική παράσταση να τη παραγοντοποιήσουμε, δηλαδή να την μετατρέψουμε σε γινόμενο. Πριν ξεκινήσουμε όμως ας κάνουμε μερικές παρατηρήσεις και πρώτα απ’ όλα να πούμε ότι δεν παραγοντοποιούνται όλες οι αλγεβρικές παραστάσεις άλλες γίνονται γινόμενο κι άλλες όχι. Επίσης να πούμε ότι οι τρόποι που θα παρουσιάσουμε εδώ δεν είναι οι μοναδικοί αλλά είναι μόνο αυτοί που μπορεί να χρησιμοποιήσει ένας μαθητής της Γ΄ Γυμνασίου με αυτά που έχει διδαχθεί μέχρι τώρα  και σύμφωνα με τη νέα ύλη (έκδοση light δηλαδή). Για τους μαθητές της Α΄ Λυκείου έχουμε επιπλέον τρόπους και για τους μαθητές της Β΄ Λυκείου ακόμη περισσότερους.

Πως γίνεται η παραγοντοποίηση

Όταν μας δωθεί μια αλγεβρική παράσταση και για κάποιο λόγο πρέπει να την μετατρέψουμε σε γινόμενο ακολουθούμε τα παρακάτω βήματα:

  1. Ελέγχουμε αν μπορούμε να εφαρμόσουμε τη μέθοδο του Κοινού Παράγοντα. Αν ναι έχει καλώς την εφαρμόζουμε και τελειώσαμε (συνήθως) αν όχι τότε πάμε στην
  2. Μέθοδο της Ομαδοποίησης αλλά αν δεν εφαρμόζεται ούτε κι αυτή θα κοιτάξουμε μήπως μπορούμε να
  3. Κάνουμε χρήση των Ταυτοτήτων
  4. Εξετάζουμε μήπως η παράσταση που έχουμε είναι τριώνυμο

Ας δούμε όμως αυτές τις μεθόδους αναλυτικά:

[su_tabs style=1]

[su_tab title=»Κοινός Παράγοντας»]

Στην αλγεβρική παράσταση 2χ+2ψ+14ω, τα 2χ, 2ψ και 14ω λέγονται «όροι» της παράστασης. Στον όρο 2χ οι 2 και χ λέγονται παράγοντες του 2χ, ανάλογα το2 και ψ έιναι οι παράγοντες του 2ψ και οι 14 και ω οι παράγοντες του 14ω.
Παρατηρούμε ότι ο αριθμός 2 είναι «κοινός παράγοντας» αφού εμφανίζεται σε όλους τους όρους. Στους 2χ και 2ψ είναι προφανές ενώ στον όρο 14ω είναι κρυμμένος μέσα στο 14 (14=2.7).
Όταν λοιπόν στην παράσταση που θέλουμε να μετατρέψουμε σε γινόμενο είμαστε «τυχεροι» και υπάρχει κοινός παράγοντας τότε κάνουμε χρήση της επιμεριστικής ιδιότητας ( α(β+γ)=αβ+αγ ). Έτσι η παράσταση 2χ+2ψ+14ω γίνεται 2χ+2ψ+14ω=2χ+2ψ+2.7ω=2(χ+ψ+7ω) που έγινε γινόμενο και τελειώσαμε.

Όταν κοιτάμε μήπως υπάρχει κάποιος κοινός παράγοντας, κοιτάμε για κοινό αριθμό ή κοινό γράμμα ή ακόμη και για κοινή παρένθεση. Δείτε τα παραδείγματα παρακάτω:
2χ-αχ+βχ2=χ(2 – α+βχ), κοινός παράγοντας ήταν το χ που υπήρχε παντου αφού 2χ-αχ+βχ2=2χ-αχ+βχχ.
3κ(χ+ψ)+6α(χ+ψ)-12β(χ+ψ)=3(χ+ψ)(κ+2α-4β), κοινός παράγοντας ήταν το 3 που είναι κρυμμένο και στο 6 και στο 12 αλλά και η παρένθεση (χ+ψ).

Παρατηρήσεις:

(α) Για να βρούμε τι θα γράψουμε μέσα στη παρένθεση αφού βγάλουμε τον κοινό παράγοντα, διαιρούμε κάθε όρο με τον κοινό παράγοντα (αν και συνήθως είναι προφανές και δεν κάνουμε τη διαίρεση).

π.χ. Στην παράσταση 4χψ2+2χ2ψ-2χψ κοινός παράγοντας είναι το 2χψ κι έτσι θα γράψουμε 2χψ.(κάτι). Για να βρούμε αυτό το κάτι κάνουμε 4χψ2/2χψ+2χ2ψ/2χψ-2χψ/2χψ=2ψ+χ-1.
Τελικά 4χψ2+2χ2ψ-2χψ=2χψ(2ψ+χ-1).

(β) Για να ελέγξουμε αν η παραγγοντοποίηση έγινε σωστά μπορούμε να κάνουμε επιμεριστική στο αποτέλεσμα και θα πρέπει οπωσδήποτε να προκύψει το πρώτο μέλος.

Έτσι στο προηγούμενο παράδειγμα έχουμε 2χψ(2ψ+2χ-1)=2χψ.2ψ+2χψ.2χ-2χψ.1=4χψ2+4χ2ψ-2χψ.

(γ) Μερικές φορές είναι χρήσιμο να βγάζουμε κοινό παράγοντα κάποιον αριθμό που μπροστά του να έχει πρόσημο – . Σε αυτές τις περιπτώσεις οι όροι που παραμένουν στην παρένθεση έχουν αντίθετο πρόσημο από αυτό που είχαν. Για παράδειγμα στην παράσταση 2χ – 2ψ μπορώ να βγάλω κοινό παράγοντα το 2 και να γίνει 2χ – 2ψ=2(χ-ψ) αλλά θα μπορούσα να βγάλω κοινό παράγοντα και το -2, αν το ήθελα, τότε θα είχαμε 2χ – 2ψ = -2(-χ+ψ).

(δ) Αν κάποιος παράγοντας εμφανίζεται με διαφορετικές δυνάμεις επιλέγουμε να βγάλουμε κοινό παράγοντα αυτόν με τη μικρότερη δύναμη. π.χ. 2α3(χ+ψ)2+4α2(χ+ψ)3=2α2(χ+ψ)2(α+2(χ+ψ))=2α2(χ+ψ)2(α+2χ+2ψ).

[/su_tab]

[su_tab title=»Ομαδοποίηση»]

Επειδή δεν θα είμαστε πάντα τυχεροί να έχουμε κοινό παράγοντα όπως στην περίπτωση της παράστασης 2αχ+4αψ+3βχ+6βψ, τότε κοιτάμε μήπως αν χωρίσουμε τους όρους σε ομάδες καταφέρουμε να βρούμε κοινό παράγοντα. Πράγματι οι όροι 2αχ και 4αψ έχουν κοινό παράγοντα το 2α, οπότε 2αχ+4αψ=2α(χ+2ψ), ενώ οι όροι 3βχ και 6βψ έχουν κοινό παράγοντα το 3β, οπότε 3βψ+6βψ=3β(χ+2ψ). Για να δούμε τι μπορούμε να κάνουμε τώρα, μέχρι στιγμής έχουμε 2αχ+4αψ+3βχ+6βψ=2α(χ+2ψ)+3β(χ+2ψ). Οι όροι από 4 έγιναν 2 και μάλιστα έχουν κοινό παράγοντα την παρένθεση (χ+2ψ), άρα

2αχ+4αψ+3βχ+6βψ=2α(χ+2ψ)+3β(χ+2ψ)=(χ+2ψ)(2α+3β).

Η μέθοδος που ακολουθήσαμε εδώ λέγεται «ομαδοποίηση» ή παραγοντοποίηση κατά ομάδες και ο λόγος είναι προφανής αφού αναγκαστήκαμε να χωρίσουμε την παράσταση σε ομάδες και να βγάλουμε κοινό παράγοντα σε κάθε ομάδα χωριστά.

Παρατηρήσεις:

(α) Στη μέθοδο της ομαδοποίησης ποτέ δεν τελειώνουμε αμέσως αλλά υπάρχουν πάντα δύο στάδια. Αφού τελειώσουμε την παραγοντοποίηση κάθε ομάδας πρέπει οι παρενθέσεις που θα μείνουν να είναι ίδιες ώστε να ξαναβγεί κοινός παράγοντας.

(β) Αν οι παρενθέσεις που θα μείνουν κατά το πρώτο στάδιο δεν είναι ίδιες μάλλον έχουμε διαλέξει λάθος ομάδες. Ξαναδοκιμάζουμε λοιπόν παίρνοντας διαφορετικές ομάδες. π.χ. Για να παραγοντοποιήσω την αχ3+2αβ+βχ2+2α2χ κάνω τα εξής: αχ3+2αβ+βχ2+2α2χ=(αχ3+2αβ)+(βχ2+2α2χ)=α(χ3+2β)+χ(βχ+2α2) και δεν μπορώ να συνεχίσω στο δεύτερο στάδιο αφού οι παρενθέσεις δεν είναι ίδιες κι επομένως δεν έχω κοινό παράγοντα. Αν όμως διαλέξουμε διαφορετικές ομάδες: αχ3+2αβ+βχ2+2α2χ=(αχ3+βχ2)+(2αβ+2α2χ)=χ2(αχ+β)+2α(β+αχ)=(αχ+β)(χ2+2α) είμαστε εντάξει.

(γ) Αν οι παρενθέσεις που θα μας μείνουν κατά το πρώτο στάδιο της παραγοντοποίησης κατά ομάδες είναι αντίθετες αυτό διορθώνεται εύκολα αρκεί να βγάλουμε κοινό παράγοντα τον αντίθετο από αυτό που βγάλαμε. Δείτε το χ3 – χ2 – 2χ +2=χ2(χ-1)+2(-χ+1). Οι παρενθέσεις είναι αντίθετες, το διορθώνω είτε βγάζοντας κοινό παράγοντα στη πρώτη ομάδα το – χ2 αντί για το χ2 είτε το -2 στη δεύτερη ομάδα αντί γιά το 2 κι έτσι θα έχουμε χ3 – χ2 – 2χ +2=χ2(χ-1)+2(-χ+1)=χ2(χ-1) – 2(χ-1)=(χ-1)(χ2 – 2).

[/su_tab]

[su_tab title=»Ταυτότητες»]

Αν τελικά είμαστε πολύ «άτυχοι» και οι δύο προηγούμενοι τρόποι δεν μπορούν να εφαρμοστούν ελέγχουμε μήπως στην παράσταση υπάρχουν ταυτότητες που μπορούμε να χρησιμοποιήσουμε. Πιο συγκεκριμένα οι ταυτότητες που πιθανόν να υπάρχουν είναι αυτές που διδαχθήκαμε φέτος, δηλαδή οι:

  • άθροισμα ή διαφορά στο τετράγωνο

        \[a^2\pm2ab+b^2=(a\pm b)^2\]

    (1)

  • άθροισμα ή διαφορά στο κύβο

        \[a^3\pm3a^2b+3ab^2\pm b^3=(a\pm b)^3\]

    (2)

  • διαφορά τετραγώνων

        \[a^2-b^2=(a-b)(a+b)\]

    (3)

Μια ένδειξη για το ποια ταυτότητα μπορεί να υπάρχει στην παράσταση αποτελεί το πλήθος των όρων που υπάρχουν στην παράσταση.Έτσι αν υπάρχουν 2 όροι πιθανόν να έχουμε την ταυτότητα (3), αν υπάρχουν 3 όροι πιθανόν να υπάρχει η ταυτότητα (1) και τέλος με 4 όρους ίσως να «παίζει» η ταυτότητα (2). π.χ. Θέλουμε να παραγοντοποιήσουμε την παράσταση x2 – 10x+25 και κοινός παράγοντας δεν υπάρχει, σε ομάδες δεν μπορούμε να η χωρίσουμε θα ελέγξουμε την περίπτωση των ταυτοτήτων. Βλέπουμε ότι έχουμε 3 όρους οπότε υποψιαζόμαστε την ταυτότητα a2 – 2ab+b2. Παρατηρώντας την παράσταση (κι αφού ξέρω τι ψάχνω να βρω) βλέπω το x2 και το 52(=25) και γι’ αυτό το λόγο δοκιμάζω την (x – 5)2 που μου δίνει x2 – 2.x.5+52=x2 – 10x+25. Βγήκε αυτό που ελπίζαμε άρα μπορούμε τώρα να γράψουμε x2 – 10x+25=(x – 5)2.

[/su_tab]

[su_tab title=»Συνδυασμοί»]

Να σημειώσουμε εδώ ότι οι τρεις μέθοδοι που παρουσιάστηκαν προηγουμένως είναι οι συνηθέστεροι αλλά όπως αναφέραμε και πιο πάνω δεν είναι οι μοναδικοί και ότι υπάρχουν ασκήσεις που χρειάζεται να συνδυάσουμε τις παραπάνω μεθόδους ή και να αυτοσχεδιάσουμε καμιά φορά. Ας δούμε δύο τέτοιες περιπτώσεις:

π.χ.1 Για να παραγοντοποιήσω την παράσταση x2+5x+6, βλέπω ότι δεν υπάρχει κοινός παράγοντας σε ομάδες δεν χωρίζεται (γιατί έχω μόνο 3 όρους ) αλλά ούτε ταυτότητες υπάρχουν. Παρ’ όλα αυτά θα μπορούσαμε να κάνουμε ένα τέχνασμα ώστε οι όροι από 3 να γίνουν 4 κι έτσι να δουλέψω με την μέθοδο της ομαδοποίησης. Σπάω λοιπόν τον όρο 5x σε 2x+3x (επέλεξα αυτά τα νούμερα γιατί είναι «κρυμένα» μέσα στο 6 που έχω στην παράσταση, μην παραλείψετε να διαβάσετε την «Παρατήρηση» στο τέλος του άρθρου). Τώρα να δούμε τι πετύχαμε

    \[x^2+5x+6=x^2+2x+3x+6=\]

    \[x(x+2)+3(x+2)=(x+2)(x+3)\]

Παρατήρηση: Το ότι επιλέξαμε να σπάσουμε το 5χ σε 2χ+3χ όπως αναφέρθηκε και παραπάνω δεν ήταν τυχαίο. Είναι μια ολόκληρη μέθοδος που την παρουσιάζει και το σχολικό βιβλίο ως η «μέθοδος τριωνύμου» που με λίγα λόγια λέει το εξής:
Όταν θέλω να μετατρέψω σε γινόμενο μια παράσταση της μορφής x^2+Ax+\Gamma προσπαθώ να βρω δυο αριθμούς που αν τους προσθέσω να κάνουν Α ενώ αν τους πολλαπλασιάσω να κάνουν Γ. Αν καταφέρω να βρω αυτούς τους αριθμούς, έστω ότι αυτοί είναι ο κ και ο λ, τότε το τριώνυμο παίρνει τη μορφή (x+\kappa)(x+\lambda) . Έτσι λοιπόν στο παραπάνω παράδειγμα είχαμε:

Για το τριώνυμο x^2+5x+6 αναζητούμε ένα ζευγάρι αριθμών που θα πρέπει να έχει γινόμενο ίσο με 6 και άθροισμα ίσο με 5. Πριν απαντήσουμε αμέσως ποιοι είναι αυτοί οι αριθμοί ας σκεφτούμε λίγο:

  1. Ξεκινάμε από το γινόμενο διότι υπάρχουν λίγες απαντήσεις. Ενώ άθροισμα 5 μπορώ να σχηματίσω με άπειρα ζευγάρια ακεραίων (π.χ. (2,3) , (6,-1) , (100,-95) κ.α.) , γινόμενο 6 μπορώ να σχηματίσω μόνο με τους: (1,6) , (2,3) , (-1,-6) και (-2,-3).
  2. Από τα παραπάνω ζευγάρια μόνο το ζευγάρι 2 και 3 πληροί τις προϋποθέσεις που έχουμε αφού το άθροισμά τους είναι 5 το δε γινόμενό τους είναι 6.
  3. Άρα έχουμε x^2+5x+6=(x+2)(x+3)

Τα παραπάνω μπορούμε να τα τακτοποιήσουμε και σε ένα πινακάκι ως εξής:

    \[x^2+5x+6=(x+\kappa)(x+\lambda)\]

κ λ Γινόμενο = +6 Άθροισμα = +5
+1 +6 +6 +7
+2 +3 +6 +5
-1 -6 +6 -7
-2 -3 +6 -5

    \[x^2+5x+6=(x+2)(x+3)\]

Αυτή τη μέθοδο την παρουσιάζουμε εδώ συνοπτικά και δεν χρειάζεται να επιμείνουμε άλλο γιατί σε μερικά μαθήματα παρακάτω θα μάθουμε μια άλλη μέθοδο παραγοντοποίησης του τριωνύμου η οποία δεν παρουσιάζει τους περιορισμούς που παρουσιάζει αυτή η μέθοδος (όπως για παράδειγμα ότι εφαρμόζεται μόνο στην περίπτωση που ο συντελεστής του x2 είναι 1)

π.χ.2 Έστω ότι θέλω να παραγοντοποιήσω την παράσταση x-x3+x2 – 1. Αφού δεν υπάρχει κοινός παράγοντας πάμε για ομαδοποίηση με x4 – x3 τη μια ομάδα (που έχει κοινό παράγοντα το x3) και x2 – 1 την άλλη ομάδα που δεν έχει κοινό παράγοντα αλλά είναι ταυτότητα x2 – 1=(x – 1)(x+1). Άρα θα έχω

    \[x^4-x^3+x^2-1=(x^4-x^3)+(x^2-1)=\]

    \[x^3(x-1)+(x-1)(x+1)=\]

    \[(x-1)(x^3+(x+1))=(x-1)(x^3+x+1)\]

[/su_tab]

[su_tab title=»plus»]

Αφού είδαμε κάθε μια μέθοδο χωριστά ίσως θα ήταν καλύτερα τώρα να βλέπαμε την παραγοντοποίηση και με μια άλλη ματιά.  Πιο πάνω στο άρθρο αυτό αναφέραμε ότι για να παραγοντοποιήσουμε μια αλγεβρική παράσταση ελέγχουμε με τη σειρά: ΚΟΙΝΟ ΠΑΡΑΓΟΝΤΑ >> ΟΜΑΔΕΣ >> ΤΑΥΤΟΤΗΤΕΣ >> ΤΡΙΩΝΥΜΟ. Όμως από τους όρους που έχει αυτή η αλγεβρική παράσταση κάποιες από τις παραπάνω μεθόδους θα μπορούσαν να αποκλειστούν (π.χ. με 2 όρους δεν μπορείς να κάνεις ομαδοποίηση). Έτσι θα μπορούσαμε να σκεφτόμαστε κι ως εξής:

 

Παραγοντοποίηση με
2 όρους 3 όρους 4+ όρους
Κοινός Παράγοντας
Ταυτότητα

    \[A^2-B^2\]

Τριώνυμο Ομαδοποίηση
Ταυτότητα

    \[(A\pm B)^2\]

Ταυτότητα

    \[(A\pm B)^3\]

 

[/su_tab]

[/su_tabs]