ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ
Όταν μας δίνεται ο τύπος μιας συνάρτησης στην ουσία μας δίνεται μια σχέση (ισότητα) που μας δείχνει τον τρόπο που συνδέονται μεταξύ τους τα x (=πρότυπα) με τα y (ή αλλιώς f(x)-εικόνες). Έτσι έχουμε τη δυνατότητα όταν γνωρίζουμε το x να μπορούμε να υπολογίσουμε την εικόνα του αλλά και το αντίστροφο όταν μας δίνουν το y μπορούμε εμείς να βρούμε το x. Ας πάρουμε για παράδειγμα τη συνάρτηση f με τύπο f(x)=4-x2. Για να βρω την εικόνα του 1 δεν έχω παρά να βάλω όπου x τον αριθμό 1 και να υπολογίσω το y. Έτσι θα έχω f(1)=4-12=3, δηλαδή η εικόνα του 1 είναι ο αριθμός 3. Αυτό μου δίνει και μια επιπλέον πληροφορία ότι η γραφική παράσταση της συνάρτησης f διέρχεται από το σημείο με συντεταγμένες (1,3). Αν τώρα μας ρωτήσουν ποιος αριθμός έχει εικόνα το -12 θα πρέπει εμείς να πάμε και πάλι στον τύπο της συνάρτησης και να βάλουμε όπου y (ή f(x) – το ίδιο είναι) τον αριθμό -12 και από τη σχέση αυτή να υπολογίσουμε το x. Ας το δούμε,
-12=4-x2 άρα 0=16-x2 δηλαδή (4-x)(4+x)=0 οπότε x=4 ή x= -4. Απαντάμε λοιπόν ότι οι αριθμοί -4 , 4 έχουν εικόνα τον -12. Πράγμα που σημαίνει ακόμη ότι η γραφική παράσταση της συνάρτησης f (συμβολίζεται με Cf ) περνάει από τα σημεία (-4,-12) και (4,-12). Τελειώσαμε με την εισαγωγή πάμε τώρα στο θέμα μας.
Θέλουμε να βρούμε τα σημεία που η γραφική παράσταση μιας συνάρτησης τέμνει τον άξονα x’x γνωρίζουμε όμως ότι όλα τα σημεία που βρίσκονται πάνω στον άξονα αυτό έχουν τεταγμένη μηδέν (y=0). Το ίδιο θα ισχύει και με το σημείο που ψάχνουμε άρα αρκεί να βάλουμε στον τύπο της συνάρτησης μας y=0 και να υπολογίσουμε το x. Ας χρησιμοποιήσουμε πάλι την ίδια συνάρτηση που χρησιμοποιήσαμε και πιο πάνω y=4-x2 η οποία για y=0 γίνεται 0=4-x2 δηλαδή 0=(2-x)(2+x) απ’ όπου προκύπτει x=-2 ή x=2. Επομένως γνωρίζουμε τώρα ότι η f τέμνει τον x’x στα σημεία με συντεταγμένες (-2,0) και (2,0)
Για να βρούμε το σημείο(αν υπάρχει θα είναι ένα και μοναδικό) που η γραφική παράσταση μιας συνάρτησης τέμνει τον άξονα y’y αρκεί να σκεφτούμε ότι όλα τα σημεία του άξονα αυτού έχουν τετμημένη ίση με μηδέν (x=0). Έτσι λοιπόν θα βάλουμε κι εμείς στον τύπο της συνάρτησης όπου x το αριθμό 0 και θα βρούμε πολύ εύκολα το y. Στην y=4-x2 για x=0 παίρνω y=4 και γνωρίζω πλέον ότι η f τέμνει τον y’y στο σημείο με συντεταγμένες (0,4).
Μπορούμε τώρα να καταλήξουμε στο παρακάτω συμπέρασμα:
[su_box color=»#0997FC» title=»Τομές γραφικής παράστασης με τους άξονες»][su_list style=»idea»]
Για να βρω που τέμνει η γραφική παράσταση της f
- τον x’x, βάζω στον τύπο της f y=0
- τον y’y, βάζω στον τύπο της f x=0
[/su_list][/su_box]
Ας δούμε και μερικά παραδειγματάκια τα οποία σας προτείνω να λύσετε μόνοι σας και στη συνέχεια να κάνετε κλικ στη «Λύση» για να τσεκάρετε αυτό που βρήκατε.
Άσκηση 1:
Να βρείτε σε ποιο σημείο τέμνει η
![]()
τον άξονα y’y
[wpspoiler name=»Λύση»]
Η f αν τέμνει τον y’y θα τον τέμνει στο σημείο με συντεταγμένες (0,f(0)). Αρκεί λοιπόν να βρούμε το f(0). Βάζουμε x=0 και έχουμε
![]()
Επομένως το σημείο είναι το (0,1)
Παρατήρηση: Μια συνάρτηση δεν είναι υποχρεωτικό να τέμνει τον άξονα y’y αυτό μπορεί να συμβαίνει για παράδειγμα σε μια συνάρτηση που το 0 δεν θα ανήκει στο πεδίο ορισμού της και κατά συνέπεια δεν θα υπάρχει το f(0) π.χ. η g(x)=1/x. Αν στο πεδίο ορισμού της συνάρτησης υπάρχει το 0 τότε μπορώ να βρω την εικόνα του άρα και το σημείο που τέμνει αυτή τον y’y. Το σημείο αυτό όμως θα είναι μοναδικό γιατί δεν γίνεται να δώσω στο x την τιμή 0 και να πάρω περισσότερα από ένα αποτελέσματα άλλωστε το λέει ξεκάθαρα και ο ορισμός της συνάρτησης ότι «σε κάθε x από το πεδίο ορισμού αντιστοιχεί ένα και μόνο y». Έτσι λοιπόν η γραφική παράσταση μιας συνάρτησης μπορεί να τέμνει τον y’y το πολύ σε ένα σημείο.
[/wpspoiler]
Άσκηση 2:
Αν η συνάρτηση
![]()
τέμνει τον y’y σε σημείο με τεταγμένη 1 να βρείτε το k.
[wpspoiler name=»Λύση»]Το σημείο που η f τέμνει τον y’y έχει συντεταγμένες (0,f(0)). Η άσκηση μας δίνει τη πληροφορία ότι το σημείο αυτό είναι το (0,1) άρα είναι «υποχρεωτικό» να ισχύει
![]()
![]()
![]()
![]()
![]()
[/wpspoiler]
Άσκηση 3:
Να βρείτε τα σημεία τομής των γραφικών παραστάσεων των συναρτήσεων
![]()
και
![]()
με τους άξονες.
[wpspoiler name=»Λύση»]
- Για την f έχουμε
Πεδίο ορισμού:![Rendered by QuickLaTeX.com \[\mathbb{R}-\{1\}\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-f152f477a3b665bd0d3e7832cebe4d02_l3.png)
γιατί το x δεν μπορεί να πάρει την τιμή 1 αφού μηδενίζει τον παρονομαστή (x-1=0
x=1)
Τομή με τον y’y: Βάζω x=0 και παίρνω![Rendered by QuickLaTeX.com \[f(0)=\frac{0^2+0+2}{0-1}=-2\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-c06015202e505263dd3aeb0e1982c9e7_l3.png)
άρα τέμνει τον y’y στο (0,-2)
Τομές με τον x’x: Βάζω y=0 και παίρνω![Rendered by QuickLaTeX.com \[\frac{x^2+x+2}{x-1}=0\Leftrightarrow x^2+x+2=0\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-373c6412f4244b878864cdad11011063_l3.png)
η εξίσωση αυτή είναι δεύτερου βαθμού με διακρίνουσα αρνητική (Δ=12-4.1.2=-7) επομένως δεν έχει λύσεις πράγμα που σημαίνει ότι η γραφική παράσταση της f δεν τέμνει τον x’x.
Παρατήρηση: Η εξίσωση f(x)=0 είναι μια εξίσωση με άγνωστο το x και το πόσες λύσεις θα έχει εξαρτάται από τη μορφή που θα έχει ο τύπος της συνάρτησης μπορεί να είναι αδύνατη όπως αυτή που είδαμε μόλις τώρα και η Cf να μην τέμνει τον x’x αλλά μπορεί να έχει μια, δύο, τρεις ή και άπειρες λύσεις οπότε να τέμνει τον x’x σε δύο, τρία ή και άπειρα σημεία. - Για την g έχουμε
Πεδίο ορισμού:![Rendered by QuickLaTeX.com \[\mathbb{R}-\{0\}\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-cbb312dd6a4ee481b3ae90eb6211e053_l3.png)
γιατί το x είναι παρονομαστής και δεν μπορεί να μηδενίζεται
Τομή με τον y’y: Βάζω x=0 ???? Προφανώς η Cg δεν τέμνει τον άξονα των y αφού δεν υπάρχει το g(0)
Τομές με τον x’x: Βάζω y=0 και λύνω την εξίσωση![Rendered by QuickLaTeX.com \[g(x)=0\Leftrightarrow\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-1486c3f2962f2ca98e29f69cddc0517a_l3.png)
![]()
![]()
![]()
![Rendered by QuickLaTeX.com \[\left\{\begin{matrix}4x-12=8\\ \eta \\4x-12=-8 \end{matrix}\Leftrightarrow \left\{\begin{matrix}4x=20\Leftrightarrow x=5\\ \eta \\4x=4\Leftrightarrow x=1\end{matrix}\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-334cae74292529eb6254713ee7ee42a1_l3.png)
επομένως η γραφική παράσταση της g τέμνει τον άξονα x’x στα σημεία (1,0) , (5,0)
[/wpspoiler]
Άσκηση 4:
Αν γνωρίζουμε ότι η συνάρτηση
![]()
τέμνει τον y’y στο σημείο με τεταγμένη 6 και τον x’x στα σημεία με τετμημένες 2 και 3 να βρεθούν τα a,b και c.
[wpspoiler name=»Λύση»]
Επειδή η f τέμνει τον y’y στο (0,6) θα πρέπει να ισχύει
![]()
Τώρα η συνάρτηση μας παίρνει τη μορφή
![]()
γνωρίζουμε όμως ότι τέμνει και τον x’x στα (2,0) και (3,0) επομένως θα ισχύει

![]()

Έτσι μετά τη λύση του συστήματος βρήκαμε a=1, b=-5, c=6 οπότε και η f είναι η
![]()
[/wpspoiler]






![Rendered by QuickLaTeX.com \[|x-1|=2 \Leftrightarrow\left\{\begin{matrix}x-1=-2\Leftrightarrow x=-2+1=-1\\ \eta\\x-1=2\Leftrightarrow x=2+1=3\end{matrix}\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-3d8b31a9400dddc58f39cee2363a52b1_l3.png)


![Rendered by QuickLaTeX.com \[\left | x \right |=\alpha \Leftrightarrow \left\{\begin{matrix} \left | x \right |=1 \Leftrightarrow x=\pm 1\\\eta'\\ \left | x \right |=-2 & \alpha \delta \upsilon \nu \alpha \tau \eta \end{matrix}\right.\]](http://users.sch.gr/dpanagiotis/wp-content/ql-cache/quicklatex.com-198fbd64d110d48053f6e400aa566f03_l3.png)


[/gn_spoiler]

