Παγκύπριες Εξετάσεις

Τα θέματα παρελθόντων ετών στα μαθηματικά, με τις λύσεις τους, από τις Παγκύπριες εξετάσεις.

Μαθηματικά Κοινού Κορμού
Εκφώνηση Λύση
2006 2006
2007 2007
2008 2008
2009 2009
Μαθηματικά Κατεύθυνσης
Εκφώνηση Λύση
2006   Α Β Γ Δ 2006   Α Β Γ Δ
2007   Α Β Γ Δ 2007   Α Β Γ   Δ
2008   Α Β Γ Δ 2008   Α Β Γ Δ
2009   Α Β Γ Δ 2009   Α Β Γ Δ

Θέματα Πανελλαδικών Περασμένων Ετών

Τα θέματα των μαθηματικών παλαιότερων ετών από τις Πανελλαδικές εξετάσεις με τις λύσεις τους.

Γενικής Παιδείας Κατεύθυνσης
Εκφωνήσεις Λύσεις Εκφωνήσεις Λύσεις
2000 2000 2000 2000
2001 2001 2001 2001
2002 2002 2002 2002
2003 2003 2003 2003
2004 2004 2004 2004
2005 2005 2005 2005
2006 2006 2006 2006
2007 2007 2007 2007
2008 2008 2008 2008
2009 2009 2009 2009
2010 2010 2010 2010

Προσδιορισμός του Συντελεστή Διεύθυνσης της Ευθείας

Δείτε με ποιους τρόπους μπορούμε να υπολογίσουμε το συντελεστή διεύθυνσης μιας ευθείας ανάλογα με τα δεδομένα της άσκησης. Το άρθρο απευθύνεται σε μαθητές της Β΄ Λυκείου και κυρίως σε αυτούς που παρακολουθούν την θετική ή την τεχνολογική κατεύθυνση.

Σε προηγούμενο άρθρο είδαμε πως μπορούμε να βρούμε την εξίσωση μιας ευθείας. Είχαμε αναφέρει λοιπόν ότι πρέπει να μας έχουν δοθεί οπωσδήποτε ο συντελεστής διεύθυνσης (λ) κι ένα σημείο Α(χΑΑ) της ευθείας. Μάλιστα είχαμε λύσει κι ένα παράδειγμα όπου και τα δύο (συντελεστής και σημείο) δίνονταν άμεσα. Σήμερα θα δούμε με ποιους τρόπους θα μπορούσαν να μας δώσουν (έμμεσα) το συντελεστή διεύθυνσης.

  1. Μέσω της γωνίας που σχηματίζει η ευθεία με τον άξονα χ΄χ:
    Αν η ευθεία (ε) η οποία ζητάμε σχηματίζει γωνία ω με τον άξονα χ΄χ, τότε ισχύει: λε=εφω
  2. Μέσω δύο σημείων Α και Β από τα οποία διέρχεται η ευθεία:
    Έστω ότι η ευθεία (ε) που θέλουμε να βρούμε διέρχεται από τα σημεία Α(xA,yΑ) και Β(xΒ,yΒ), τότε για το συντελεστή διεύθυνσης λε της ευθείας (ε) ισχύει:
    \lambda_\epsilon=\frac{y_B-y_A}{x_B-x_A} (μόνο για το Λύκειο)
  3. Μέσω της παραλληλίας της ζητούμενης ευθείας με μια άλλη ευθεία που μας έχουν δώσει:
    Αν η ευθεία (ε) που ψάχνουμε είναι παράλληλη με μια ευθεία (δ) μας έχουν δώσει, τότε ισχύει: λε = λδ.
  4. Μέσω της καθετότητας της ζητούμενης ευθείας με άλλη ευθεία που μας έχει δοθεί:
    Αν η ζητούμενη ευθεία (ε) είναι κάθετη σε δοσμένη ευθεία (δ), τότε ισχύει: \lambda_\epsilon\cdot\lambda_\delta=-1
  5. Μέσω της παραλληλίας της ζητούμενης ευθείας με ένα διάνυσμα που μας έχουν δώσει (Β΄ Λυκείου Κατεύθυνση):
    Αν η ευθεία που αναζητάμε είναι παράλληλη με ένα διάνυσμα που μας έχουν δώσει με συντελεστή λδ, τότε ισχύει: λε = λδ.
  6. Μέσω της καθετότητας της ζητούμενης ευθείας με ένα διάνυσμα που μας έχει δοθεί (Β΄ Λυκείου κατεύθυνση):
    Αν η ευθεία μας είναι κάθετη σε κάποιο διάνυσμα που έχει συντελεστή διεύθυνσης λδ, τότε θα ισχύει: \lambda_\epsilon\cdot\lambda_\delta=-1.

Συγκεντρώνοντας όλα τα παραπάνω σε ένα πίνακα έχουμε:

Eυθεία (ε) με… Υπολογισμός του λε
(ε) και χ΄χ να σχηματίζουν γωνία ω λε = εφω
(ε) να διέρχεται από Α(xA,yA) και Β(xB,YB) \lambda_\epsilon=\frac{y_B-y_A}{x_B-x_A}
(ε) παράλληλη προς την ευθεία (δ) λε = λδ
(ε) κάθετη με την ευθεία (δ) \lambda_\epsilon\cdot\lambda_\delta=-1
(ε) παράλληλη με το διάνυσμα λε = λδ
(ε) κάθετη με το διάνυσμα \lambda_\epsilon\cdot\lambda_\delta=-1

Και για να ολοκληρώσουμε αυτά που είχαμε πει για τον προσδιορισμό της εξίσωσης μιας ευθείας θα τελειώσουμε βλέποντας με ποιο άλλο τρόπο θα μπορούσαν να μας δώσουν ένα σημείο από το οποίο περνά η ευθεία. Αν λοιπόν δεν δοθεί άμεσα θα μπορούσε να δοθεί ως τομή δύο άλλων ευθειών. Στην περίπτωση αυτή για να βρούμε τις συντεταγμένες του σημείου που χρειαζόμαστε πρέπει να λύσουμε το σύστημα αυτών των δύο εξισώσεων (αυτό θα μπορούσε να γίνει μόνο για τις Γ΄ Γυμνασίου, Α΄ Λυκείου και στην Κατεύθυνση της Β΄ Λυκείου. Στη Β΄ Γυμνασίου το σημείο θα δίνεται άμεσα.

Επειδή το άρθρο είναι σχετικά μεγάλο τα απαραίτητα παραδείγματα θα τα λύσουμε στο επόμενο.

Συνεχίζεται…>>>

Η εξίσωση της Ευθείας

Η εξίσωση ψ=λχ+β είναι γνωστό ότι παριστάνει μια ευθεία. Όμως ποιος ο ρόλος του λ και ποιος του β στην εξίσωση αυτή;

Είναι γνωστό ότι η αλγεβρική μορφή της εξίσωσης μιας ευθείας είναι η

Γραφική παράσταση
Κάντε κλικ στην εικόνα να δείτε το ρόλο των λ και β

y=\lambda\cdot\chi+\beta  (\epsilon), όπου

  • ο (πραγματικός) αριθμός λ  ονομάζεται «συντελεστής διεύθυνσης» και εκφράζει την κλίση της ευθείας σε σχέση με τονημιάξονα Οχ και
  • ο αριθμός β δηλώνει τη θέση πάνω στον άξονα ψ΄ψ από την οποία διέρχεται η ευθεία.

Αυτό με το οποίο θα ασχοληθούμε σήμερα είναι το πως μπορούμε να βρούμε την εξίσωση μιας ευθείας, δηλαδή με άλλα λόγια να υπολογίσουμε τους αριθμούς λ και β.

Για να μπορέσουμε να βρούμε την εξίσωση θα πρέπει οπωσδήποτε να γνωρίζουμε (να μας έχουν δώσει δηλαδή)

  1. το συντελεστή διεύθυνσης (λ) και
  2. ένα σημείο έστω Α(χΑΑ) από το οποίο διέρχεται η ευθεία που ψάχνουμε.

Για παράδειγμα ας βρούμε την ευθεία που έχει συντελεστή διεύθυνσης 2 και διέρχεται από το σημείο Α(1,3).

Λύση:

Η εξίσωση της ευθείας (\epsilon) θα έχει τη μορφή:

y=\lambda\cdot\chi+\beta

όμως μας έχουν δώσει ότι το λ=2,

y=2\cdot\chi+\beta

Για να δούμε τώρα πως θα υπολογίσουμε το β.

Έχουμε αναφέρει σε προηγούμενο άρθρο ότι,

«Όταν η γραφική παράσταση μιας συνάρτησης διέρχεται από κάποιο σημείο, τότε οι συντεταγμένες του σημείου επαληθεύουν την εξίσωση (τον τύπο) της συνάρτησης αυτής»

κι έτσι

[warning]Όταν μας δίνουν εξίσωση ευθείας και σημείο από το οποίο διέρχεται η ευθεία αυτή πάντα αντικαθιστούμε τις συντεταγμένες του σημείου στην εξίσωση της ευθείας.[/warning]

Ας το εφαρμόσουμε στην συγκεκριμένη περίπτωση να δούμε. Αντικαθιστούμε λοιπόν το χ με τον αριθμό 1 και το ψ με τον αριθμό 3 κι έχουμε:

y=2\cdot\chi+\beta ,για χ=1 και y=3

3=2\cdot1+\beta

προέκυψε λοιπόν μια εξίσωση με μοναδικό άγνωστο το β, το οποίο και υπολογίζουμε

3-2=\beta\Leftrightarrow\beta=1

Βρήκαμε λοιπόν ότι η ευθεία με συντελεστή διεύθυνσης λ=2 που διέρχεται από το σημείο Α(1,3) είναι η

y=2x+1.

Σχόλια:

  • Θυμηθείτε τι έχουμε αναφέρει προηγούμενα » όσα πράγματα μας ζητούν τόσα πρέπει και να μας δίνουν γιαυτό αναζητήστε τα στην εκφώνηση της άσκησης.

[notice]

Tip 1:

Πλήθος Ζητούμενων = Πλήθος Δεδομένων

[/notice]


  • Αυτή την άσκηση είμαι σίγουρος ότι θα την χαρακτηρίσετε ως εύκολη. Σας πληροφορώ όμως ότι είναι η μοναδική κατηγορία ασκήσεων στην αναζήτηση της εξίσωσης μιας ευθείας. Οποιαδήποτε άλλη κι αν δείτε δεν έχει τίποτα  παραπάνω τίποτα λιγότερο. Αυτό που κάνει κάποιες ασκήσεις της κατηγορίας αυτής πιο σύνθετες είναι ο τρόπος με τον οποίο δίνονται τα απαραίτητα στοιχεία δηλαδή ο συντελεστής διεύθυνσης και το σημείο.
    Ακριβώς στο επόμενο άρθρο μας θα δούμε αυτό ακριβώς το «παιχνίδι», με ποιους τρόπους είναι δυνατό να δοθεί (έμμεσα) το λ και με ποιους τρόπους το σημείο.

 

[important]

Tip 2:

Για να βρούμε την εξίσωση μιας ευθείας πρέπει απαραίτητα  να μας δίνουν (άμεσα ή έμμεσα)

[gn_list style=»guard»]

  • το συντελεστή διεύθυνσης
  • ένα σημείο της.

[/gn_list]

[/important]


Μέχρι τότε μπορείτε εσείς να δοκιμάσετε να λύσετε την  παρακάτω άσκηση και να μας στείλετε την απάντηση (στα σχόλια του άρθρου) καθώς κι οποιαδήποτε απορία έχετε, ή κάποιο σχόλιο που θέλετε να κάνετε.

Μπορείτε φυσικά να επικοινωνήσετε και με e-mail.

Άσκηση:

Να βρεθεί η ευθεία (3) που έχει συντελεστή διεύθυνσης διπλάσιο από τον συντελεστή διεύθυνσης της ευθείας  (δ):2ψ+4χ=3 αν γνωρίζετε ότι το σημείο Α(-3,8) είναι σημείο της (ε).

Συνεχίζεται…>>>

Εξίσωση Ευθείας

Μια λυμένη άσκηση στην εξίσωση της ευθείας για τους μαθητές της Γ΄ Γυμνασίου που για τη λύση της επιλύουμε σύστημα.

Άσκηση:

Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία Α(2,7) και Β(1,-3).

Λύση:

Όπως ξέρουμε όλες οι ευθείες έχουν την ίδια αλγεβρική μορφή, όλες είναι της μορφή: y=ax+b (εκτός από τις κατακόρυφες φυσικά)

Εμείς εδώ καλούμαστε να υπολογίσουμε τους αριθμούς a και b. Αφού λοιπόν μας ζητάνε δύο πράγματα θα πρέπει να μας έχουν δώσει και δύο πληροφορίες τις οποίες και θα πρέπει να εκμεταλλευτούμε.Προφανώς στη συγκεκριμένη άσκηση οι δύο πληροφορίες είναι ότι τα σημεία Α και Β είναι σημεία αυτής της ευθείας. Τι σημαίνει όμως αυτό για μας και πως μπορούμε να το χρησιμοποιήσουμε;

«Όταν η γραφική παράσταση μιας συνάρτησης διέρχεται από κάποιο σημείο, τότε οι συντεταγμένες του σημείου επαληθεύουν την εξίσωση (τον τύπο) της συνάρτησης αυτής»

Δηλαδή, αν αντικαταστήσουμε τις συντεταγμένες του σημείου (x,y) στην εξίσωση της συνάρτησης, προκύπτει μια «αληθής» πρόταση. Αυτό λοιπόν θα κάνουμε κι εδώ, θα αντικαταστήσουμε τις συντεταγμένες των σημείων Α και Β στην εξίσωση y=ax+b κι θα προκύψουν δύο εξισώσεις (με δύο άγνωστους, τους a και b.

Πράγματι,

για το σημείο Α(2,7) έχουμε

    \[7=2a+b\]

ενώ για το σημείο Β(1,-3) έχουμε

    \[-3=a+b\]

Στο σύστημα που προέκυψε αφαιρούμε τις δύο εξισώσεις κατά μέλη ώστε να «εξαφανιστεί» το b και θα έχουμε την εξίσωση

    \[10=a\]

Επανερχόμαστε τώρα σε μια από τις δύο εξισώσεις του συστήματος (προφανώς σε αυτή που θεωρούμε ευκολότερη), αντικαθιστούμε το a με τον αριθμό 10 και υπολογίζουμε το b.

Ας υποθέσουμε ότι επιλέγουμε την-3=a+b που για a=10 δίνει

    \[-3=10+b\]

    \[-10-3=b\]

δηλαδή

    \[b=-13\]

κι έτσι η ευθεία που ψάχναμε ήταν η:

    \[y=10x-13\]

[gn_box type=»warning» title=»Tip 1″]

Όταν μας δίνουν εξίσωση ευθείας και σημείο από το οποίο διέρχεται η ευθεία αυτή πάντα αντικαθιστούμε τις συντεταγμένες του σημείου στην εξίσωση της ευθείας.[/gn_box]

[gn_box type=»warning» title=»Tip 2″]

Για να λύσουμε σύστημα που προέκυψε από εξίσωση ευθείας όπως στην παραπάνω άσκηση, ο συντομότερος τρόπος είναι να αφαιρέσουμε τις εξισώσεις κατά μέλη.[/gn_box]

Δοκιμάστε κι εσείς να λύσετε την παρακάτω άσκηση και στείλτε μας την απάντηση(στα σχόλια αυτού του άρθρου ή με email).

Να βρεθεί η εξίσωση της ευθείας που τέμνει τον άξονα χ΄χ στο σημείο με τετμημένη -1 ενώ τον ψ΄ψ στο σημείο με τεταγμένη 1. Καλή επιτυχία.