Quiz Γ΄ Γυμνασίου: Ταυτότητες

Λύστε ένα κουίζ με ασκήσεις Σωστού – Λάθους, Πολλαπλής Επιλογής, Αντιστοίχισης κ.α. με ερωτήσεις από τις Ταυτότητες

QuestionGuy

Θέλω να μάθω…πως βρίσκουμε τα σημεία που η γραφική παράσταση μιας συνάρτησης τέμνει τους άξονες

Ξέρουμε τον τύπο της συνάρτησης f και θέλουμε να βρούμε τα κοινά σημεία της γραφικής παράστασης της f με τους άξονες x’x και y’y.

 

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Όταν μας δίνεται ο τύπος μιας συνάρτησης στην ουσία μας δίνεται μια σχέση (ισότητα) που μας δείχνει τον τρόπο που συνδέονται μεταξύ τους τα x (=πρότυπα) με τα y (ή αλλιώς f(x)-εικόνες). Έτσι έχουμε τη δυνατότητα όταν γνωρίζουμε το x να μπορούμε να υπολογίσουμε την εικόνα του αλλά και το αντίστροφο όταν μας δίνουν το y μπορούμε εμείς να βρούμε το x. Ας πάρουμε για παράδειγμα τη συνάρτηση f με τύπο f(x)=4-x2. Για να βρω την εικόνα του 1 δεν έχω παρά να βάλω όπου x τον αριθμό 1 και να υπολογίσω το y. Έτσι θα έχω f(1)=4-12=3, δηλαδή η εικόνα του 1 είναι ο αριθμός 3. Αυτό μου δίνει και μια επιπλέον πληροφορία ότι η γραφική παράσταση της συνάρτησης f διέρχεται από το σημείο με συντεταγμένες (1,3). Αν τώρα μας ρωτήσουν ποιος αριθμός έχει εικόνα το -12 θα πρέπει εμείς να πάμε και πάλι στον τύπο της συνάρτησης και να βάλουμε όπου y (ή f(x) – το ίδιο είναι) τον αριθμό -12 και από τη σχέση αυτή να υπολογίσουμε το x. Ας το δούμε,

-12=4-x2 άρα 0=16-x2 δηλαδή (4-x)(4+x)=0 οπότε x=4 ή x= -4. Απαντάμε λοιπόν ότι οι αριθμοί -4 , 4 έχουν εικόνα τον -12. Πράγμα που σημαίνει ακόμη ότι η γραφική παράσταση της συνάρτησης f (συμβολίζεται με Cf ) περνάει από τα σημεία (-4,-12) και (4,-12). Τελειώσαμε με την εισαγωγή πάμε τώρα στο θέμα μας.

Θέλουμε να βρούμε τα σημεία που η γραφική παράσταση μιας συνάρτησης τέμνει τον άξονα x’x γνωρίζουμε όμως ότι όλα τα σημεία που βρίσκονται πάνω στον άξονα αυτό έχουν τεταγμένη μηδέν (y=0). Το ίδιο θα ισχύει και με το σημείο που ψάχνουμε άρα αρκεί να βάλουμε στον τύπο της συνάρτησης μας y=0 και να υπολογίσουμε το x. Ας χρησιμοποιήσουμε πάλι την ίδια συνάρτηση που χρησιμοποιήσαμε και πιο πάνω y=4-x2 η οποία για y=0 γίνεται 0=4-x2 δηλαδή 0=(2-x)(2+x) απ’ όπου προκύπτει x=-2 ή x=2. Επομένως γνωρίζουμε τώρα ότι η f τέμνει τον x’x στα σημεία με συντεταγμένες (-2,0) και (2,0)
Για να βρούμε το σημείο(αν υπάρχει θα είναι ένα και μοναδικό) που η γραφική παράσταση μιας συνάρτησης τέμνει τον άξονα y’y αρκεί να σκεφτούμε ότι όλα τα σημεία του άξονα αυτού έχουν τετμημένη ίση με μηδέν (x=0). Έτσι λοιπόν θα βάλουμε κι εμείς στον τύπο της συνάρτησης όπου x το αριθμό 0 και θα βρούμε πολύ εύκολα το y. Στην y=4-x2 για x=0 παίρνω y=4 και γνωρίζω πλέον ότι η f τέμνει τον y’y στο σημείο με συντεταγμένες (0,4).

Μπορούμε τώρα να καταλήξουμε στο παρακάτω συμπέρασμα:

[su_box color=»#0997FC» title=»Τομές γραφικής παράστασης με τους άξονες»][su_list style=»idea»]

Για να βρω που τέμνει η γραφική παράσταση της f

  • τον x’x, βάζω στον τύπο της f y=0
  • τον y’y, βάζω στον τύπο της f x=0

[/su_list][/su_box]

Ας δούμε και μερικά παραδειγματάκια τα οποία σας προτείνω να λύσετε μόνοι σας και στη συνέχεια να κάνετε κλικ στη «Λύση» για να τσεκάρετε αυτό που βρήκατε.

Άσκηση 1:

Να βρείτε σε ποιο σημείο τέμνει η

    \[f(x)=\frac{x^3-1}{2x^5+3x-1}\]

τον άξονα y’y
[wpspoiler name=»Λύση»]

Η f αν τέμνει τον y’y θα τον τέμνει στο σημείο με συντεταγμένες (0,f(0)). Αρκεί λοιπόν να βρούμε το f(0). Βάζουμε x=0 και έχουμε

    \[f(0)=\frac{0^3-1}{2\cdot 0^5+3\cdot 0-1}=\frac{-1}{-1}=1\]

Επομένως το σημείο είναι το (0,1)

Παρατήρηση: Μια συνάρτηση δεν είναι υποχρεωτικό να τέμνει τον άξονα y’y αυτό μπορεί να συμβαίνει για παράδειγμα σε μια συνάρτηση που το 0 δεν θα ανήκει στο πεδίο ορισμού της και κατά συνέπεια δεν θα υπάρχει το f(0) π.χ. η g(x)=1/x. Αν στο πεδίο ορισμού της συνάρτησης υπάρχει το 0 τότε μπορώ να βρω την εικόνα του άρα και το σημείο που τέμνει αυτή τον y’y. Το σημείο αυτό όμως θα είναι μοναδικό γιατί δεν γίνεται να δώσω στο x την τιμή 0 και να πάρω περισσότερα από ένα αποτελέσματα άλλωστε το λέει ξεκάθαρα και ο ορισμός της συνάρτησης ότι «σε κάθε x από το πεδίο ορισμού αντιστοιχεί ένα και μόνο y». Έτσι λοιπόν η γραφική παράσταση μιας συνάρτησης μπορεί να τέμνει τον y’y το πολύ σε ένα σημείο.

[/wpspoiler]

Άσκηση 2:

Αν η συνάρτηση 

    \[f(x)=\frac{x^3-k}{2x^5+3x-3k+4}\]

τέμνει τον y’y σε σημείο με τεταγμένη 1 να βρείτε το k.

[wpspoiler name=»Λύση»]Το σημείο που η f τέμνει τον y’y έχει συντεταγμένες (0,f(0)). Η άσκηση μας δίνει τη πληροφορία ότι το σημείο αυτό είναι το (0,1) άρα είναι «υποχρεωτικό» να ισχύει

    \[f(0)=1\Leftrightarrow\]

    \[\frac{0^3-k}{2\cdot 0^5+3\cdot 0 -3k+4}=1\Leftrightarrow\]

    \[\frac{-k}{-3k+4}=1\Leftrightarrow\]

    \[-k=-3k+4\Leftrightarrow\]

    \[3k-k=4\Leftrightarrow 2k=4\Leftrightarrow k=2\]

[/wpspoiler]

Άσκηση 3:

Να βρείτε τα σημεία τομής των γραφικών παραστάσεων των συναρτήσεων

    \[f(x)=\frac{x^2+x+2}{x-1}\]

και

    \[g(x)=\frac{|4x-12|-8}{x}\]

με τους άξονες.

[wpspoiler name=»Λύση»]

  • Για την f έχουμε
    Πεδίο ορισμού:

        \[\mathbb{R}-\{1\}\]

    γιατί το x δεν μπορεί να πάρει την τιμή 1 αφού μηδενίζει τον παρονομαστή (x-1=0 \Leftrightarrow x=1)
    Τομή με τον y’y: Βάζω x=0 και παίρνω

        \[f(0)=\frac{0^2+0+2}{0-1}=-2\]

    άρα τέμνει τον y’y στο (0,-2)
    Τομές με τον x’x: Βάζω y=0 και παίρνω

        \[\frac{x^2+x+2}{x-1}=0\Leftrightarrow x^2+x+2=0\]

    η εξίσωση αυτή είναι δεύτερου βαθμού με διακρίνουσα αρνητική (Δ=12-4.1.2=-7) επομένως δεν έχει λύσεις πράγμα που σημαίνει ότι η γραφική παράσταση της f δεν τέμνει τον x’x.
    Παρατήρηση: Η εξίσωση f(x)=0 είναι μια εξίσωση με άγνωστο το x και το πόσες λύσεις θα έχει εξαρτάται από τη μορφή που θα έχει ο τύπος της συνάρτησης μπορεί να είναι αδύνατη όπως αυτή που είδαμε μόλις τώρα και η Cf να μην τέμνει τον x’x αλλά μπορεί να έχει μια, δύο, τρεις ή και άπειρες λύσεις οπότε να τέμνει τον x’x σε δύο, τρία ή και άπειρα σημεία.

  • Για την g έχουμε
    Πεδίο ορισμού:

        \[\mathbb{R}-\{0\}\]

    γιατί το x είναι παρονομαστής και δεν μπορεί να μηδενίζεται
    Τομή με τον y’y: Βάζω x=0 ???? Προφανώς η Cg δεν τέμνει τον άξονα των y αφού δεν υπάρχει το g(0)
    Τομές με τον x’x: Βάζω y=0 και λύνω την εξίσωση

        \[g(x)=0\Leftrightarrow\]

    \[\frac{|4x-12|-8}{x}=0\Leftrightarrow\]

    \[|4x-12|-8=0\Leftrightarrow\]

    \[|4x-12|=8\Leftrightarrow\]

    \[\left\{\begin{matrix}4x-12=8\\ \eta \\4x-12=-8 \end{matrix}\Leftrightarrow \left\{\begin{matrix}4x=20\Leftrightarrow x=5\\ \eta \\4x=4\Leftrightarrow x=1\end{matrix}\]

επομένως η γραφική παράσταση της g τέμνει τον άξονα x’x στα σημεία (1,0) , (5,0)

[/wpspoiler]

Άσκηση 4:

Αν γνωρίζουμε ότι η συνάρτηση

    \[f(x)=ax^2+bx+c\]

τέμνει τον y’y στο σημείο με τεταγμένη 6 και τον x’x στα σημεία με τετμημένες 2 και 3 να βρεθούν τα a,b και c.

[wpspoiler name=»Λύση»]

Επειδή η f τέμνει τον y’y στο (0,6) θα πρέπει να ισχύει

    \[f(0)=6\Leftrightarrow a0^2+b0+c=6\Leftrightarrow c=6\]

Τώρα η συνάρτηση μας παίρνει τη μορφή

    \[f(x)=ax^2+bx+6\]

γνωρίζουμε όμως ότι τέμνει και τον x’x στα (2,0) και (3,0) επομένως θα ισχύει

\left\{\begin{matrix}f(2)=0\\ \kappa\alpha\iota\\f(3)=0\end{matrix} \Leftrightarrow \left\{\begin{matrix}4a+2b+6=0\\ \kappa\alpha\iota\\9a+3b+6=0\end{matrix}\Leftrightarrow \left\{\begin{matrix}2a+b+3=0\\ \kappa\alpha\iota\\3a+b+2=0\end{matrix}\Leftrightarrow

\left\{\begin{matrix}2a+b=-3\\ \kappa\alpha\iota\\3a+b=-2\end{matrix}\Leftrightarrow \left\{\begin{matrix}b=-2a-3\\ \kappa\alpha\iota\\3a+(-2a-3)=-2\end{matrix}\Leftrightarrow \left\\{begin{matrix}b=-2a-3\\ \kappa\alpha\iota\\a-3=-2\end{matrix}\Leftrightarrow

\left\{\begin{matrix}b=-2a-3\\ \kappa\alpha\iota\\a=1\end{matrix}\Leftrightarrow \left\{\begin{matrix}b=-2\cdot 1-3\\ \kappa\alpha\iota\\a=1\end{matrix}\Leftrightarrow \left\{\begin{matrix}b=-5\\ \kappa\alpha\iota\\a=1\end{matrix}

Έτσι μετά τη λύση του συστήματος βρήκαμε a=1, b=-5, c=6 οπότε και η f είναι η

    \[f(x)=x^2-5x+6\]

[/wpspoiler]

Παραγοντοποίηση Τριωνύμου

Με ποιο τρόπο μετατρέπουμε σε γινόμενο ένα τριώνυμο; Τι ρόλο παίζουν οι ρίζες του τριωνύμου σε αυτή τη διαδικασία;

 

ΑΛΓΕΒΡΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

Παραγοντοποίηση Τριωνύμου
Για να κάνουμε ένα τριώνυμο γινόμενο αρκεί να βρούμε τις ρίζες του χ1 , χ2 και να το γράψουμε α(χ-χ1)(χ-χ2)

Την αλγεβρική παράσταση

    \[\alpha x^2+\beta x +\gamma\]

συνήθως την ονομάζουμε τριώνυμο και νομίζω ότι είναι προφανής ο λόγος αφού όπως βλέπουμε αποτελείται από τρεις μόνο όρους. Τον δευτεροβάθμιο όρο «αx2«, τον πρωτοβάθμιο όρο «βx» και από τον σταθερό όρο «γ». Για το τριώνυμο έχουμε ξαναμιλήσει σε προηγούμενο άρθρο κι έχουμε ασχοληθεί με το πως μπορούμε να βρούμε τις ρίζες του, θυμίζουμε ότι ρίζες του τριωνύμου είναι οι λύσεις της εξίσωσης

    \[\alpha x^2+\beta x +\gamma=0\]

  (αν θέλετε να το διαβάσετε αναλυτικά κάντε κλικ εδώ αν θέλετε να θυμηθείτε στα γρήγορα τη διαδικασία κάντε κλικ εδώ να δείτε τη μεθοδολογία).

Τώρα θα ασχοληθούμε με το πως μπορούμε να παραγοντοποιήσουμε ένα τριώνυμο δηλαδή με ποιο τρόπο μπορούμε να μετατρέψουμε ένα τριώνυμο σε γινόμενο. Για την παραγοντοποίηση γενικά έχουμε αναφερθεί προηγούμενα εδώ. Επειδή όμως στο σχολικό βιβλίο η παραγοντοποίηση του τριωνύμου παρουσιάζεται αρκετά αργότερα, δεν το είχαμε αναφέρει καθόλου τότε. Έφτασε λοιπόν η ώρα να ασχοληθούμε και με αυτό το θέμα.

Όταν λοιπόν για κάποιο λόγο χρειαστεί ένα τριώνυμο να το κάνουμε γινόμενο δεν έχουμε παρά να βρούμε τις ρίζες του έστω x1 και x2 και στη συνέχεια να χρησιμοποιήσουμε τον τύπο:

[su_note color=»#0972FB»]

    \[\alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)\]

[/su_note]

Ας δούμε ένα παράδειγμα: Έστω ότι θέλουμε να μετατρέψουμε σε γινόμενο το x^2+3x-4.

Πρώτα απ’ όλα πρέπει να βρούμε τις ρίζες του και για το λόγο αυτό λύνουμε την εξίσωση 

    \[x^2+3x-4=0\]

.

Έχουμε \left.\begin{matrix} \alpha=1\\ \beta=3\\ \gamma=-4\end{matrix}\right\}\Rightarrow \Delta=\beta^2-4\alpha\gamma=3^2-4\cdot 1\cdot (-4)=9+16=25

οπότε οι ρίζες είναι

x_1,x_2=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-3\pm5}{2}\Rightarrow \left\{\begin{matrix}x_1=\frac{-3-5}{2}=-4\\x_2=\frac{-3+5}{2}=1\end{matrix}

Σύμφωνα με αυτά που αναφέραμε πιο πάνω παραγοντοποιούμε το τριώνυμο με τον τύπο και παίρνουμε

    \[x^2+3x-4=1[x-(-4)](x-1)=(x+4)(x-1)\]

θα δούμε και δύο ακόμη παραδείγματα γιατί πιθανόν να δημιουργήθηκαν απορίες σε ορισμένους από εσάς για το τι κάνουμε στην περίπτωση που δεν έχουμε ρίζες ή στην περίπτωση που το τριώνυμο έχει διακρίνουσα ίση με μηδέν.

Αν ένα τριώνυμο όπως για παράδειγμα το x2+x+1 έχει διακρίνουσα αρνητική (Δ=-3) τότε όπως γνωρίζουμε δεν έχει ρίζες κι έτσι δεν μετατρέπεται σε γινόμενο.

Ενώ αν μας δωθεί  για παραγοντοποίηση ένα τριώνυμο όπως το 4x2-12x+9 θα έχουμε

\left.\begin{matrix}\alpha=4\\ \beta=-12\\ \gamma=9\end{matrix}\right\}\Rightarrow\Delta=144-4\cdot4\cdot9=144-144=0

πράγμα που σημαίνει ότι έχουμε δύο ρίζες μόνο που στην περίπτωση αυτή θα είναι ίσες μεταξύ τους. Πράγματι

    \[x_1=x_2=\frac{-\beta\pm 0}{2a}=\frac{12}{2\cdot4}=\frac{3}{2}\]

Έτσι χρησιμοποιώντας τον τύπο που δώσαμε παραπάνω παίρνουμε τελικά

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

το οποίο μάλλον θα ήταν πιο όμορφο αν το γράφαμε έτσι

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

    \[4x^2-12x+9=4(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=2^2(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=\left\{2(x-\frac{3}{2})\right\}^2\]

    \[4x^2-12x+9=(2x-3)^2\]

Παρατηρούμε λοιπόν ότι ο τύπος για την παραγοντοποίηση τριωνύμου «δουλεύει» και όταν Δ>0 (δύο ρίζες διαφορετικές) αλλά και όταν Δ=0 (δύο ρίζες ίσες). Αν και όπως βλέπουμε κι από το προηγούμενο ακριβώς παράδειγμα το4x^2-12x+9=(2x-3)^2 μας δείχνει ότι το τριώνυμο ήταν ταυτότητα αλλά δεν το είχαμε προσέξει. Αυτό όμως είναι κανόνας που ισχύει πάντα «όταν η διακρίνουσα ενός τριωνύμου είναι ίση με μηδέν το τριώνυμο έχει δύο ρίζες ‘ισες χ12« κι επομένως θα ισχύει

    \[\alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2\]

Συνοψίζοντας λοιπόν όλα τα παραπάνω έχουμε:

[su_box title=»Μετατροπή τριωνύμου σε γινόμενο» color=»#0972FB»]

Το τριώνυμο \alpha x^2+\beta x+\gamma

[su_list style=»arrow»]

  • αν έχει Δ<0, δεν παραγοντοποιείται
  • αν έχει Δ=0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2
  • αν έχει Δ>0, γίνεται  \alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)

όπου x_1 , x_2 οι ρίζες του.  [/su_list][/su_box]

Θέλω να μάθω … να λύνω εξισώσεις με απόλυτα

Για να λύσουμε εξισώσεις με απόλυτες τιμές (που ο άγνωστος είναι «φυλακισμένος» μέσα σε απόλυτα) πρέπει να ελευθερώσουμε τον άγνωστο από το απόλυτο. Πως μπορούμε να το πετύχουμε;

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

free xΓια το πως μπορούμε να απαλλαγούμε από τις απόλυτες τιμές που τυχόν εμφανίζονται σε μία αλγεβρική παράσταση έχουμε αναφερθεί σε προηγούμενο άρθρο μας (και καλό θα ήταν να του ρίξετε μια  ματιά κάνοντας κλικ εδώ). Σε αυτή τη δημοσίευση θα ασχοληθούμε με εξισώσεις στις οποίες ο άγνωστος βρίσκεται πίσω από τις μπάρες της απόλυτης τιμής. Εξισώσεις δηλαδή που ο άγνωστος είναι «φυλακισμένος» μέσα σε μία ή και περισσότερες απόλυτες τιμές. Σκοπός μας σε μια τέτοια εξίσωση (όπως και σε κάθε εξίσωση άλλωστε) είναι να βρούμε ποιος αριθμός είναι «κρυμμένος πίσω από τη μάσκα του x». Στόχος μας είναι να «ελευθερώσουμε» το x μέσα από την απόλυτη τιμή. Για να το καταφέρουμε αυτό ας θυμηθούμε πρώτα τι είναι η απόλυτη τιμή ενός αριθμού και μετά βλέπουμε πως λύνουμε την εξίσωση.

Η απόλυτη τιμή ενός αριθμού ορίζεται και αλγεβρικά και γεωμετρικά. Εμείς θα αρκεστούμε στο δεύτερο μιας και είναι αρκετό για να στηριχτούμε σε αυτό και να καταφέρουμε να λύσουμε τις εξισώσεις.

 Τι είναι λοιπόν η απόλυτη τιμή;

Γνωρίζουμε ότι κάθε πραγματικός αριθμός  x παριστάνεται με ένα σημείο πάνω στον άξονα των πραγματικών αριθμών. Την απόσταση του σημείου αυτού από το 0 τη λέμε απόλυτη τιμή του αριθμού x και τη συμβολίζουμε |x|.
Η απόλυτη τιμή ενός αριθμού εκφράζει την απόστασή του από το 0, χωρίς να μας ενδιαφέρει η σχετική του θέση αν δηλαδή βρίσκεται πριν ή μετά το 0

Έτσι μπορούμε να εξηγήσουμε και πολλές από τις ιδιότητες της απόλυτης τιμής όπως

Η απόλυτη τιμή οποιουδήποτε αριθμού είναι είτε θετικός αριθμός είτε μηδέν, γιατί όπως είναι γνωστό αρνητική απόσταση δεν υπάρχει. Έτσι έχουμε,

    \[|x|\geq0\]

Οι αντίθετοι αριθμοί έχουν την ίδια απόλυτη τιμή, αφού ισαπέχουν από το 0.

    \[|-x|=|x|\]

Ας δούμε τώρα τι γίνεται με τις εξισώσεις.

Σας θυμίζω ότι για να αντιλαμβανόμαστε καλύτερα τις εξισώσεις μπορούμε να τις θεωρούμε σαν ερωτήσεις. Έτσι η εξίσωση |x|= -5 , μας ρωτάει ποιος αριθμός είναι αυτός που απέχει από το 0  -5 μονάδες; Προφανώς η απάντηση είναι κανένας (αναφέραμε και πιο πάνω ότι δεν νοείται αρνητική απόσταση). Ενώ η απάντηση στην ερώτηση(=εξίσωση) |x|=0 είναι «ο μοναδικός αριθμός που απέχει από το μηδέν 0 μονάδες είναι ο 0». Όμως η εξίσωση |χ|=2 μας ζητάει να βρούμε τον αριθμό που απέχει από το 0 2 μονάδες. Η απάντηση είναι ότι δεν υπάρχει μόνο ένας αριθμός με αυτή την ιδιότητα αλλά δύο αριθμοί ο 2 και ο -2. Έτσι η εξίσωσή μας έχει δύο λύσεις τις x=2 ή x= -2. Για να γενικεύσουμε λίγο τα πράγματα και να τα βάλουμε σε μία τάξη δείτε το παρακάτω σχεδιάγραμμα.

Εξισώσεις με απόλυτα
Προσοχή! Όταν a>0 έχουμε 2 λύσεις

Όπου βλέπετε f(x) θα εννοούμε «μια παράσταση που περιέχει x». Γιατί μέσα στο απόλυτο δεν είναι απαραίτητο να υπάρχει μόνο x, μπορεί κάποιοι «κακοί μαθηματικοί» (σαν κι εμένα) να ζητήσουν να λυθούν εξισώσεις που μέσα στο απόλυτο να υπάρχουν αρκετά πράγματα.

Για να λύσουμε οποιαδήποτε εξίσωση στην οποία το x βρίσκεται μέσα σε απόλυτο, πρέπει να στηριχτούμε στα συμπεράσματα του παραπάνω πίνακα. Πρέπει λοιπόν να απομονώσουμε το απόλυτο στο ένα μέλος και μετά κοιτώντας τι ρόλο παίζει το άλλο μέλος να αποφανθούμε αν η εξίσωση έχει λύσεις ή όχι και στην περίπτωση που έχει ποιες είναι αυτές. Ας δούμε τώρα μερικά παραδείγματα:

Άσκηση 1: Να λυθεί η εξίσωση  \frac{4-5|x|}{12}-\frac{3|x|-3}{2}=2|-x|-6

[gn_spoiler title=»Λύση:»]Φαίνεται η εξίσωση μας να έχει δύο διαφορετικές απόλυτες τιμές την |x| και την |-x|. Αυτό όμως δεν αληθεύει γιατί ξέρουμε ότι |-x|=|x|. Οπότε μπορούμε στην εξίσωση που μας δώσανε όπου έχει |-x| εμείς να βάλουμε |x|. Για να απομονώσουμε το απόλυτο που θέλουμε θα ακολουθήσουμε τη γνωστή διαδικασία που ακολουθούμε σε όλες τις εξισώσεις α΄ βαθμού.
Πρώτα θα διώξουμε τους παρονομαστές πολλαπλασιάζοντας κάθε όρο με το Ε.Κ.Π. των παρονομαστών που είναι το 12

    \[12\frac{4-5|x|}{12}-12\frac{3|x|-3}{2}=12\cdot 2|x|-12\cdot 6 \Leftrightarrow\]

    \[4-5|x|-6(3|x|-3)=24|x|-72\]

Τώρα διώχνουμε τις παρενθέσεις κάνοντας χρήση της επιμεριστικής ιδιότητας

    \[4-5|x|-18|x|+18=24|x|-72\]

Χωρίζουμε τους γνωστούς από τους άγνωστους ώστε να μπορέσουμε να συνεχίσουμε τις πράξεις χωρίς να ξεχνάμε ότι προς το παρόν άγνωστος είναι το |x| κι όχι το x

    \[-5|x|-18|x|-24|x|=-4-18-72\Leftrightarrow\]

    \[-47|x|=-94\Leftrightarrow 47|x|=94\]

άρα

    \[|x|=\frac{94}{47}\]

ή πιο απλά

    \[|x|=2\]

Αφού καταφέραμε κι απομονώσαμε το απόλυτο μπορούμε σύμφωνα με όσα έχουμε πει πιο πάνω ν΄απαντήσουμε ότι x=2 ή x=-2
[/gn_spoiler]

Άσκηση 2: Να λυθεί η εξίσωση \frac{4-5|x-1|}{12}-\frac{3|x-1|-3}{2}=2|1-x|-6

[gn_spoiler title=»Λύση:»]Όπως θα παρατηρήσατε η εξίσωση αυτή είναι ίδια με την προηγούμενη με την μόνη αλλαγή αντί για |x| έχουμε |x-1|. Και πάλι επειδή οι αριθμοί 1-x και x-1 είναι αντίθετοι η εξίσωση θα γίνει

    \[\frac{4-5|x-1|}{12}-\frac{3|x-1|-3}{2}=2|x-1|-6\]

και θα λυθεί με τον ίδιο ακριβώς τρόπο καταλήγοντας στο

    \[|x-1|=2 \Leftrightarrow\left\{\begin{matrix}x-1=-2\Leftrightarrow x=-2+1=-1\\ \eta\\x-1=2\Leftrightarrow x=2+1=3\end{matrix}\]

Έτσι λοιπόν βλέπουμε ότι αν τα απόλυτα που έχουμε στην εξίσωση περιέχουν ίσες ή ακόμη και αντίθετες παραστάσεις, τότε δεν μας ενδιαφέρει το περιεχόμενη της απόλυτης τιμής. Λύνουμε την εξίσωση κανονικά όπως όλες τις εξισώσεις «κουβαλώντας» το απόλυτο μέχρι να καταφέρουμε να το απομονώσουμε και στο τέλος το πετάμε (πάντα σύμφωνα με το διάγραμμα που έχουμε παραπάνω).
Επειδή κάποιοι μπορεί να «ψιλό» μπερδεύονται κουβαλώντας το απόλυτο μπορούν να γλυτώσουν από αυτό με την συνηθισμένη στα μαθηματικά μέθοδο: «αν κάτι μ΄ενοχλεί κάνω πως δεν το βλέπω». Έτσι λοιπόν θα μπορούσαμε να θέσουμε όπου |x-1|=α (σχέση 1) και να λύσουμε την εξίσωση χωρίς το απόλυτο. Μόλις ξεμπερδέψουμε με το α και το βρούμε γυρίζουμε και το αντικαθιστούμε στη σχέση 1 απ’ όπου υπολογίζουμε το x που μας ενδιαφέρει.
Watch me :)
Θέτω |χ-1|=α (σχέση 1) οπότε η εξίσωση γίνεται

    \[\frac{4-5a}{12}-\frac{3a-3}{2}=2a-6\Leftrightarrow\]

    \[12\frac{4-5a}{12}-12\frac{3a-3}{2}=12\cdot 2a-12\cdot 6 \Leftrightarrow\]

    \[4-5a-6(3a-3)=24a-72\Leftrightarrow\]

    \[-5a-18a-24a=-4-18-72\Leftrightarrow\]

    \[-47a=-94\Leftrightarrow a=2\]

Ας μην ξεχνάμε όμως ότι δεν ψάχναμε το α αλλά το x. Πάμε λοιπόν στη σχέση 1 και αντικαθιστούμε όπου α=2, οπότε

|x-1|=a \Leftrightarrow|x-1|=2 \Leftrightarrow\left\{\begin{matrix}x-1=-2\Leftrightarrow x=-2+1=-1\\ \eta\\x-1=2\Leftrightarrow x=2+1=3 \end{matrix}

Τη μέθοδο αυτή για να είμαι ειλικρινής δεν σας την έδειξα μόνο για την περίπτωση που κάποιος δυσκολεύεται με τα πολλά απόλυτα αλλά και γιατί σε κάποιες περιπτώσεις θα έλεγα δεν μπορούμε να την αποφύγουμε γι’ αυτό καλό είναι να την ξέρουμε. Δείτε την επόμενη άσκηση και θα καταλάβετε. [/gn_spoiler]

Άσκηση 3: Να βρεθούν οι αριθμοί που ικανοποιούν τη σχέση 2-|x|=x^2

[gn_spoiler title=»Λύση:»] Την άσκηση αυτή θα μπορούσαμε να τη λύσουμε απομονώνοντας το απόλυτο στο ένα μέλος, οπότε η εξίσωση να γίνει |x|=2 – x2 αλλά πιστεύω ότι έτσι δεν θα μας συνέφερε γιατί το δεύτερο μέλος (το 2 – x2) δεν γνωρίζουμε αν είναι θετικός ή αρνητικός αριθμός ( για κάποιες τιμές του x γίνεται θετικός, για κάποιες αρνητικός και για κάποιες γίνεται ίσος με 0). Έτσι θα έπρεπε να διακρίνουμε περιπτώσεις και να πούμε

Περίπτωση 1η: αν το 2 – x2 είναι αρνητικό η εξίσωσή μας είναι αδύνατη (βλέπε και το σχεδιάγραμμα πιο πάνω)

Περίπτωση 2η: αν  2 - x^2\geq0, τότε x=2-x2 ή x= – (2-x2 ) και να λύσω δύο εξισώσεις (δεύτερου βαθμού η καθεμία) κι αφού βρω τις λύσεις να κρατήσω από αυτές μόνο εκείνες που επαληθεύουν τον περιορισμό 2 - x^2\geq0 .

Για να γλυτώσουμε όλη αυτή τη δουλειά μπορούμε να σκεφτούμε λίγο πιο έξυπνα και να αντικαταστήσουμε το |x| με έναν άλλο αριθμό έστω α. Τότε θα έχουμε γλυτώσει και από το |x| αλλά και από το x2 γιατί το x2=|x2|=|x|22  (ρίξε μια ματιά στις ιδιότητες των απολύτων). Ας δούμε τώρα πως έχει καταντήσει η εξίσωσή μας θέτοντας |x|=α,

    \[2-a=a^2\Leftrightarrow a^2+a-2=0\]

Η διακρίνουσα του τριωνύμου είναι

    \[\Delta=1^2-4(-2)=9\]

 και οι λύσεις της εξίσωσης αυτής είναι

    \[a=1\]

ή

    \[a=-2\]

Εύκολα λοιπόν βρήκαμε το α, το x όμως είναι αυτό που μας ενδιαφέρει

    \[\left | x \right |=\alpha \Leftrightarrow \left\{\begin{matrix} \left | x \right |=1 \Leftrightarrow x=\pm 1\\\eta'\\  \left | x \right |=-2 & \alpha \delta \upsilon \nu \alpha \tau \eta  \end{matrix}\right.\]

[/gn_spoiler]

Άσκηση 4: Να βρεθούν οι αριθμοί που ικανοποιούν τη σχέση |2x+3|=|x+9|

[gn_spoiler title=»Λύση:»] Στην άσκηση αυτή ανήκει στη γενική κατηγορία

    \[|f(x)|=|g(x)|\]

και λύνεται με την ισοδυναμία

|f(x)|=|g(x)| \Leftrightarrow \left\{\begin{matrix}f(x)=g(x)\\ \eta\\f(x)=-g(x) \end{matrix}

 

Έχουμε λοιπόν  |2x+3|=|x+9| \Leftrightarrow \left\{\begin{matrix}2x+3=x+9\\ \eta\\2x+3=-x-9 \end{matrix}\Leftrightarrow

 

\left\{\begin{matrix}2x-x=-3+9\Leftrightarrow x=6\\ \eta\\2x+x=-3-9\Leftrightarrow x=-4 \end{matrix}[/gn_spoiler]

Θέλω να μάθω … να λύνω κλασματικές εξισώσεις

Ας δούμε ποια εξίσωση λέγεται κλασματική, πως βρίσκουμε τις λύσεις της και πως τους περιορισμούς. Δείτε πόσο σημαντικό είναι να μην ξεχνάμε να παίρνουμε περιορισμούς κάθε φορά που μια μεταβλητή εμφανίζεται σε παρονομαστή.

Κατ’ αρχάς ας δούμε τι εννοούμε όταν λέμε «κλασματικές εξισώσεις». Πολλοί μπορεί να θεωρούν ότι μια εξίσωση που έχει κλάσματα είναι μια κλασματική εξίσωση. Αυτό όμως δεν είναι σωστό γιατί μια εξίσωση τη λέμε κλασματική μόνο στη περίπτωση που υπάρχει άγνωστος σε ένα τουλάχιστον παρονομαστή της. Έτσι λοιπόν η εξίσωση \frac{x^2-1}3-\frac{x+3}5=x-2 ναι μεν έχει κλάσματα αλλά δεν είναι κλασματική αφού δεν υπάρχει άγνωστος σε κανένα παρονομαστή, ενώ η εξίσωση \frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3} σύμφωνα με αυτά που προαναφέραμε είναι μια κλασματική εξίσωση αφού ο άγνωστος x «κυκλοφορεί» σε παρονομαστές. Δηλαδή ο x «δουλεύει υπογείως (ύπουλα)» πράγμα επικίνδυνο όπως θα δούμε παρακάτω.

Στη συνέχεια θα επιλύσουμε μια κλασματική εξίσωση για να δούμε ποια μέθοδο ακολουθούμε και τι πρέπει να προσέξουμε.

Να βρείτε τις λύσεις της παρακάτω εξίσωσης  \frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3}

[wptabs mode=»horizontal»] [wptabtitle] Επίλυση[/wptabtitle] [wptabcontent]

    \[\frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3}\]

Όπως σε όλες τις κατηγορίες εξισώσεων το πρώτο πράγμα που πρέπει να κάνουμε είναι να απαλλαγούμε από τους παρονομαστές (αν υπάρχουν)

    \[\frac{6}{x(x+3)}+\frac{x+2}{x}=\frac{x+1}{x+3}\]

Για να το πετύχουμε αυτό πρέπει να παραγοντοποιήσουμε όσους από τους παρονομαστές παραγοντοποιούνται. Στην άσκησή μας ο μόνος που μπορεί να παραγοντοποιηθεί είναι ο x^2+3x=x(x+3) (βγάλαμε κοινό παράγοντα το x). Στη συνέχεια αντικαθιστούμε τους παρονομαστές με τους νέους τους παραγοντοποιημένους.

    \[x(x+3)\frac{6}{x(x+3)}+x(x+3)\frac{x+2}{x}=x(x+3)\frac{x+1}{x+3}\]

Τώρα είμαστε σε θέση να βρούμε το Ε.Κ.Π., που είναι το γινόμενο όλων των παρονομαστών με την προϋπόθεση όμως κάθε παράγοντας να εμφανίζεται μία μόνο φορά και μάλιστα στη μεγαλύτερη δύναμη. Στο παράδειγμά μας το Ε.Κ.Π.=χ(χ+3). Πολλαπλασιάζουμε τώρα όλους τους όρους της εξίσωσης με το Ε.Κ.Π.

    \[6+(x+3)(x+2)=x(x+1)\]

Μετά από τις απλοποιήσεις έχουμε μια εξίσωση χωρίς παρονομαστές, όπως φαίνεται δίπλα. Σειρά τώρα για «αποχώρηση» έχουν οι παρενθέσεις ώστε να απελευθερώσουμε το x. Αυτό γίνεται με τη βοήθεια της επιμεριστικής ιδιότητας

    \[6+x^2+2x+3x+6=x^2+x\]

    \[6+x^2+5x+6=x^2+x\]

    \[12+4x=0\]

    \[4x=-12\]

    \[x=-\frac{12}4\]

Συμμαζεύοντας λίγο (κάνουμε αναγωγή όμοιων όρων) θα προκύψει μια εξίσωση 1ου (οπότε χωρίζουμε γνωστούς – άγνωστους κτλ) ή 2ου βαθμού (τα μεταφέρουμε όλα στο ένα μέλος, υπολογίζουμε τη διακρίνουσα κτλ). Στην άσκηση που προσπαθούμε να λύσουμε τώρα παρότι δείχνει δεύτερου βαθμού (αφού έχει x2) αν τη δουλέψουμε λίγο θα δούμε ότι μετά την αναγωγή των όμοιων όρων θα προκύψει μια εξίσωση πρώτου βαθμού οπότε

    \[x=-3\]

βρίσκουμε τελικά πως η εξίσωση που μας δόθηκε έχει λύση τον αριθμό -3.

 

 

Μετά από αρκετό κόπο θα έλεγα φτάσαμε στο να βρούμε ότι η εξίσωση \frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3} έχει λύση το x=-3.

nopanic
don’t panic

Κι όμως έχουμε κάνει ΜΕΓΑΛΟ ΛΑΘΟΣ κι αν έχεις κάνει το κόπο να φτάσεις μέχρι εδώ καλό θα ήταν να κάνεις κλικ στην καρτέλα «Περιορισμοί» για να δεις ποιο είναι το λάθος που κάναμε και πόσο σοβαρό είναι.

Επιστροφή^^^
[/wptabcontent]

[wptabtitle]Περιορισμοί[/wptabtitle] [wptabcontent]Όταν έχουμε να λύσουμε μια εξίσωση αναζητούμε ποια τιμή (ή ποιες τιμές) μπορεί να πάρει η άγνωστη μεταβλητή έτσι ώστε αν την αντικαταστήσουμε στην εξίσωση να προκύψει μια αληθής ισότητα (για παράδειγμα η λύση της εξίσωσης 2χ-8=0 είναι ο αριθμός 4 γιατί αν αντικαταστήσουμε το χ με τον αριθμό 4 θα προκύψει 2.4-8=0 που είναι μια σωστή πρόταση.

Στο προηγούμενο όμως άρθρο είχαμε αναφερθεί στους περιορισμούς (κάντε κλικ εδώ για να το δείτε). Εκεί λοιπόν είπαμε ότι δεν έχει νόημα στα μαθηματικά κλάσμα με παρονομαστή το 0. Γιαυτό όταν λύνουμε κλασματικές εξισώσεις θα πρέπει εκ των προτέρων να θέτουμε περιορισμούς για τον άγνωστο. Δηλαδή από την αρχή να δηλώνουμε ότι για τον άγνωστο, έστω χ, δεν μπορούμε να δεχτούμε κάποιες τιμές γιατί μηδενίζουν κάποιον από τους παρονομαστές της εξίσωσης.

Κατά την επίλυση μιας εξίσωσης σε όποια κατηγορία κι αν ανήκει αυτή (1ου ή 2ου βαθμού ή και κλασματική) σε κάθε μας βήμα (όταν διώχνουμε παρονομαστές, παρενθέσεις κτλ) δημιουργούμε μια άλλη εξίσωση πιο απλή από την αρχική που έχει ως λύσεις της τις λύσεις της προηγούμενης αλλά πιθανόν να έχει κι άλλες (περισσότερες). Στο τέλος τις επιπλέον λύσεις θα πρέπει να τις απορρίψουμε, να μην τις δεχτούμε δηλαδή ως λύσεις της αρχικής εξίσωσης. Αυτό ακριβώς έχει συμβεί και με την εξίσωση \frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3} γιατί στην πορεία πήρε διάφορες μορφές μέχρι που κατέληξε να γίνει 4χ=-12. Εμείς βρήκαμε ότι χ=-3 αυτή όμως η λύση είναι η λύση της 4χ=-12 (γιατί αν βάλουμε όπου χ το -3 προκύπτει μια αληθής πρόταση η 4.(-3)=-12 και όχι της \frac{6}{x^2+3x}+\frac{x+2}{x}=\frac{x+1}{x+3} γιατί εδώ δεν μπορούμε καν να βάλουμε όπου χ το -3 αφού θα μας μηδενίσει κάποιους παρονομαστές (τον χ2+3χ και τον χ+3).

einstein was wrong

Τι πρέπει να κάνουμε λοιπόν σε τέτοιες περιπτώσεις;

Πρέπει να παίρνουμε τα μέτρα μας, δηλαδή να παίρνουμε περιορισμούς.

ΚΑΘΕ ΠΑΡΟΝΟΜΑΣΤΗΣ ΠΡΕΠΕΙ ΝΑ ΜΗΝ ΓΙΝΕΤΑΙ ΙΣΟΣ ΜΕ 0

κι επειδή μέσα στο Ε.Κ.Π. είναι «κρυμμένοι» όλοι οι παρονομαστές της εξίσωσης είναι αρκετό να απαιτούμε

ΤΟ Ε.Κ.Π. ΝΑ ΜΗΝ ΓΙΝΕΤΑΙ ΠΟΤΕ ΙΣΟ ΜΕ 0 (E.K.\Pi.\neq 0).

Στη συγκεκριμένη επομένως άσκηση θα έπρεπε την ώρα που βρήκαμε το  Ε.Κ.Π. να γράφαμε: E.K.\Pi.=x(x+3)\neq 0 πράγμα που σημαίνει ότι και το x αλλά και το x+3 πρέπει να είναι διάφορα του 0 δηλαδή με άλλα λόγια δεν μπορούμε να δεχτούμε σαν λύσεις ούτε το 0 αλλά ούτε και το -3. Πιο σύντομα και πιο «μαθηματικά» όλα τα παραπάνω θα μπορούσαν να γραφούν ως εξής:

    \[E.K. /Pi=x(x+3)\neq 0 \Leftrightarrow\]

    \[x\neq 0 \kappa\alpha\iota x+3\neq 0\Leftrightarrow\]

    \[x\neq 0 \kappa\alpha\iota x\neq -3\]

Βλέπουμε λοιπόν ότι η εξίσωση που λύναμε τελικά δεν έχει λύση το -3 , άρα δεν έχει καμία λύση ήταν δηλαδή αδύνατη. Ξεχνώντας όμως τους περιορισμούς «την πατήσαμε».                 Επιστροφή^^^
[/wptabcontent]

[wptabtitle]Σε Έκτακτη Περίπτωση[/wptabtitle] [wptabcontent]Αν σε κάποια περίπτωση αδυνατούμε να βρούμε τους περιορισμούς είτε γιατί κάποιος δυσκολεύεται είτε γιατί δεν προλαβαίνει (π.χ. σε διαγώνισμα) τότε μπορεί να αποφύγει τα παραπάνω και απλώς να ελέγξει αν οι λύσεις που βρήκε μηδενίζουν το Ε.Κ.Π. και
αν το Ε.Κ.Π. μηδενίζεται, τότε η λύση απορρίπτεται αν όχι γίνεται δεκτή.
Στην άσκησή μας το Ε.Κ.Π. =x(x+3) για x=-3 γίνεται Ε.Κ.Π.=-3.(-3+3)=-3.0=0 κι επομένως η λύση x=-3 απορρίπτεται.

Μπορεί να σας κούρασα με την μεγάλη έκταση που είχε το άρθρο αλλά θεωρώ τις κλασματικές εξισώσεις λιγάκι δύσκολες για μαθητές Γ΄ Γυμνασίου αλλά και πολύ σημαντικές για τη συνέχεια. Αυτό που πρέπει να θυμόμαστε τελικά είναι πως οι κλασματικές εξισώσεις λύνονται όπως και όλες οι υπόλοιπες δηλαδή:

  • διώχνουμε παρονομαστές (πολλαπλασιάζοντας με το Ε.Κ.Π.)
  • διώχνουμε παρενθέσεις (με επιμεριστική)
  • συμμαζεύουμε λίγο (αναγωγή όμοιων όρων)

έτσι προκύπτει μια εξίσωση 1ου ή 2ου βαθμού που λύνουμε ανάλογα και

τέλος

ΔΕΝ ΞΕΧΝΑΜΕ ΝΑ ΕΛΕΓΞΟΥΜΕ ΑΝ ΟΙ ΛΥΣΕΙΣ ΠΟΥ ΒΡΗΚΑΜΕ ΠΕΡΝΟΥΝ ΤΟ (CRASH) TEST ΤΩΝ ΠΕΡΙΟΡΙΣΜΩΝ (δηλαδή να μην μηδενίζουν το Ε.Κ.Π.).

[/wptabcontent][/wptabs]

Οι Περιορισμοί στα Μαθηματικά του Γυμνασίου

noΌταν μαθαίνουμε κάποιους καινούργιους ορισμούς στα μαθηματικά θα πρέπει να είμαστε πολύ προσεκτικοί, να προσέχουμε και την παραμικρή λεπτομέρεια. Έτσι ξεκινώντας από την πρώτη τάξη όπου μάθαμε τι είναι το κλάσμα (το \frac{a}{b} με b\neq0 λέγεται κλάσμα) στον ορισμό δηλώσαμε ότι ο παρονομαστής ενός κλάσματος δεν μπορεί να είναι ποτέ ίσος με το μηδέν. Δεν υπάρχει περίπτωση στην αριθμητική ποτέ να δούμε κάτι τέτοιο \frac{5}{0} . Αριθμητική όμως κάναμε μόνο στο Δημοτικό, στο Γυμνάσιο και στο Λύκειο κάνουμε Άλγεβρα. Η βασική διαφορά που υπάρχει είναι ότι στην αριθμητική χρησιμοποιούμαι μόνο αριθμούς ενώ στην άλγεβρα χρησιμοποιούμε και γράμματα (τις μεταβλητές όπως λέγονται πιο σωστά). Έτσι λοιπόν από ‘δω και πέρα θα συναντήσουμε πάρα πολλές φορές κλάσματα που στον παρονομαστή τους θα περιέχουν και μεταβλητές, όπως  αυτά \frac{5}{a} , \frac{a-1}{b-2} ή \frac{13y}{5-x}. Στις περιπτώσεις λοιπόν αυτές θα πρέπει να δηλώνουμε δίπλα από κάθε τέτοιο κλάσμα ότι ο παρονομαστής δεν μπορεί να γίνει μηδέν και για να διευκολύνουμε και αυτόν που πρόκειται να διαβάσει αυτό που γράψαμε είναι καλύτερο να γράφουμε ποια τιμή δεν επιτρέπεται να πάρει η μεταβλητή που βρίσκεται στον παρονομαστή που έχουμε. Τα κλάσματα επομένως που γράψαμε παραπάνω το σωστό θα ήταν να τα γράψουμε κάπως έτσι: Continue reading «Οι Περιορισμοί στα Μαθηματικά του Γυμνασίου»

Λυμένες Ασκήσεις στην Εξίσωση της Ευθείας

4 λυμένες ασκήσεις στην εξίσωση της ευθείας.

Αφού έχουμε διαβάσει τα άρθρα:

  1. Η εξίσωση της ευθείας (θεωρία)
  2. Προσδιορισμός του συντελεστή διεύθυνσης μιας ευθείας (θεωρία – μεθοδολογία)

μπορούμε να δούμε μερικά παραδείγματα για να κατανοήσουμε καλύτερα το πως δουλεύουμε σε ασκήσεις που μας ζητάνε να

lines
Σύνθεση με ευθείες γραμμές :)

βρούμε την εξίσωση κάποιας ευθείας.

Να βρεθεί η εξίσωση της ευθείας (ε) στις παρακάτω περιπτώσεις:

1. Διέρχεται από το σημείο Α(2,1) και σχηματίζει με τον άξονα χ΄χ γωνία ω=45ο.

Λύση: Η εξίσωση που ζητάμε θα έχει τη μορφή: \psi=\lambda\chi+\beta.

Όμως λ=εφω=εφ45ο=1, κι έτσι η εξίσωση παίρνει τη μορφή \psi=\chi+\beta.

Κι επειδή το σημείο Α(2,1) είναι σημείο αυτής της ευθείας θα πρέπει να ισχύει: 1=2+\beta, δηλαδή β=-1.

Οπότε η ζητούμενη ευθεία είναι η \psi=\chi-1.

2. Διέρχεται από το σημείο Α(1,-1) και είναι παράλληλη στην ευθεία (δ): 2χ+ψ-1=0.

Λύση: Η ευθεία που ζητάμε είναι της μορφής \psi=\lambda\chi+\beta. Επειδή ε//δ θα ισχύει λεδ, αλλά ο συντελεστής διεύθυνσης της (δ) είναι λδ=-2, (γιατί (δ): 2χ+ψ-1=0 ή (δ): ψ=-2χ+1) κι έτσι λεδ=-2.

Η ευθείας μας λοιπόν έχει τώρα τη μορφή \psi=-2\chi+\beta. Περνάει όμως από το σημείο Α(1,-1) πράγμα που σημαίνει ότι θα ισχύει -1=-2(+1)+\beta\Leftrightarrow\beta=1. Τελικά η ευθεία (ε) είναι η \psi=-2\chi+3.

3. Διέρχεται από το Α(-1,1) και είναι κάθετη στην (δ):ψ=-2χ-1.

Λύση: λδ=-2, όμως (ε) κάθετη με τη (δ) άρα έχουμε \lambda_\epsilon\cdot\lambda_\delta=-1\Leftrightarrow\lambda_\epsilon=1/2. Η ευθεία που ψάχνουμε λοιπόν θα είναι κάπως έτσι: ψ=1/2χ+β.

Για να βρούμε το β τώρα μας αρκεί το γνωστό σημείο της ευθείας το Α(-1,1) γιατί ξέρουμε ότι θα ισχύει 1=\frac{1}{2}\cdot(-1)+\beta\Leftrightarrow\beta=\frac{3}{2} άρα η ευθεία μας είναι η ψ=1/2χ+3/2.

4. Τέμνει τους άξονες στα σημεία Α(4,0) και Β(0,4)

linesΛύση: Υπολογίζουμε το λ, \lambda=\frac{\psi_2-\psi_1}{\chi_2-\chi_1}=\frac{4-0}{0-4}=-1. Επομένως η εξίσωση της ευθείας θα έχει τη μορφή ψ=-χ+β. Όσον αφορά στο β τώρα θα χρησιμοποιήσουμε ένα από τα δύο σημεία από τα οποία διέρχεται η ευθεία που ζητάμε. Έστω λοιπόν ότι χρησιμοποιούμε το Β(0,4) και με αντικατάσταση παίρνουμε 4=-0+β ή β=4. Καταλήξαμε λοιπόν στο ότι η ζητούμενη ευθεία είναι η ψ=-χ+4.

Παρατηρήσεις:

Οι παρακάτω παρατηρήσεις αφορούν μαθητές της Β΄και Γ΄τάξης του Λυκείου που ακολουθούν τη θετική ή την τεχνολογική κατεύθυνση.

Παρατήρηση 1:

Οι παραπάνω ασκήσεις θα μπορούσαν προφανώς να λυθούν πιο εύκολα με τη χρήση του τύπου

    \[\psi-\psi_0=\lambda(\chi-\chi_0)\]

όπου Μ(χ00) ένα σημείο της ευθείας και λ ο συντελεστής διεύθυνσής της. Να το δούμε σαν εφαρμογή στην παρακάτω άσκηση:

Να βρεθεί η μεσοκάθετη του τμήματος ΑΒ με Α(-2,1) και Β(2,3)

Λύση: Ο συντελεστής διεύθυνσης της ΑΒ είναι

    \[\lambda_{AB}=\frac{\psi_2-\psi_1}{\chi_2-\chi_1}=\frac{3-1}{2+2}=1/2\]

κι επειδή η μεσοκάθετη της ΑΒ είναι κάθετη με την ΑΒ θα ισχυεί:

    \[\lambda\cdot\lambda_{AB}=-1\Leftrightarrow\lambda=-2\]

.

Η μεσοκάθετη της ΑΒ θα διέρχεται από το μέσο του ΑΒ που είναι το Μ(\frac{\chi_2+\chi_1}{2} ,\frac{ \psi_2+\psi_1}{2})  δηλαδή Μ(\frac{2-2}{2} , \frac{3+1}{2})=(0,2).

Έτσι η μεσοκάθετη έχει την εξίσωση:

    \[\psi-\psi_0=\lambda(\chi-\chi_0)\Leftrightarrow\psi-0=-2(\chi-2)\Leftrightarrow\psi=-2x+4\]

, αφού έχει συντελεστή διεύθυνσης το λ=-2 και διέρχεται απο το Μ(0,2).

Παρατήρηση 2:

Σε όλα όσα έχουμε αναφέρει μέχρι τώρα γιά την εξίσωση της ευθείας έχουμε κάνει μια σημαντική παράλειψη. Είδαμε πως γιά να βρούμε την εξίσωση μιας ευθείας πρέπει οπωσδήποτε να μας δίνεται ένα σημείο της έστω Μ(α,β). Από ‘κει και πέρα υπολογίζω το λ (μέσω της γωνίας που σχηματίζει με τον χ΄χ ή μέσω μιας σχέσης παραλληλίας ή μιας σχέσης καθετότητας ή τέλος από δύο σημεία της ευθείας). Και τελικά βρίσκω την εξίσωση από τον τύπο ψ=λχ+μ ή από τον \psi-\psi_0=\lambda(\chi-\chi_0). Κι εδώ βρίσκεται το λάθος γιατί από το σημείο Μ(α,β) διέρχονται άπειρες ευθείες αλλά οι παραπάνω τύποι μας δίνουν μόνο την οριζόντια και τις πλάγιες που διέρχονται από το Μ κι όχι την κατακόρυφη κι αυτό γιατί για την κατακόρυφη δεν υπάρχει (δεν ορίζεται) συντελεστής διεύθυνσης. Αυτό σημαίνει ότι με τον τύπο \psi-\beta=\lambda(\chi-\alpha) έχω «χάσει» μια ευθεία που διέρχεται από το Μ(α,β) και συγκεκριμμένα την χ=α. Πρέπει λοιπόν όταν ξεκινάμε να λύσουμε μια άσκηση στην οποία ψάχνουμε μια ευθεία που διέρχεται από κάποιο σημείο π.χ. το Μ(1,3) να λέμε: «από το Μ(1,3) διέρχονται οι ευθείες χ=1 (κατακόρυφη) και οι ευθείες ψ-3=λ(χ-1)» στη συνέχεια να εξετάζουμε αν η κατακόρυφη ικανοποιεί τα δεδομένα του προβλήματος οπότε είναι αυτή που ψάχνουμε κι αν όχι συνεχίζουμε με τις υπόλοιπες. Ας δούμε ένα παράδειγμα και τέλος γιατί έχω την εντύπωση ότι αρκετά σας κούρασα.

Να βρεθεί η ευθεία που είναι κάθετη στο διάνυσμα \vec{a}=(3,0) και διέρχεται από το Μ(4,5).

Λύση: Από το Μ(4,5) διέρχονται οι ευθείες χ=4 (κατακόρυφη) και οι ευθείες ψ-5=λ(χ-4). Επειδή ο συντελεστής διεύθυνσης του διανύσματος είναι λ=ψ/χ=0/3=0, το διάνυσμα είναι οριζόντιο (παράλληλο στον χ΄χ) κι έτσι η ευθεία που ζητάμε θα είναι κατακόρυφη κι αφού πρέπει να περνάει από το Μ(4,5) είναι η χ=4.

Βοήθειααα … οι Ταυτότητες!!!

Βοήθειαααα!!!
Βοήθειαααα!!!

Κάθε φορά που ξεκινάω να διδάξω τις ταυτότητες, βλέπω τους μαθητές να τις αντιμετωπίζουν με φόβο, ίσως και τρόμο, πριν καλά καλά τις δουν. Ακούω επιφωνήματα του στυλ «Αχ», «ΩΩΩχχ», «γιατί μας βασανίζετε κύριε» κτλ. Κι αναρωτιέμαι γιατί αυτή η αντιμετώπιση σε ένα αντικείμενο που είναι τόσο εύκολο μα και τόσο χρήσιμο. Οι ταυτότητες μας «λύνουν τα χέρια» σε πάρα πολλές περιπτώσεις που θέλουμε να κάνουμε πράξεις που με τον κλασσικό τρόπο ( την επιμεριστική ιδιότητα δηλαδή) θα θέλαμε περισσότερο χρόνο, περισσότερες πράξεις και φυσικά με μεγαλύτερη πιθανότητα να κάνουμε λάθος. Έχοντας αυτό το εργαλείο στα χέρια μας αποφεύγουμε τις πράξεις και περνάμε κατ’ ευθείαν στο αποτέλεσμα. Μάλιστα πολλές φορές έχω ακούσει την έκφραση «αφού μπορώ να κάνω επιμεριστική και να βρω το αποτέλεσμα γιατί θα πρέπει να μάθω κάτι καινούργιο;» και αμέσως θυμάμαι τις παλίες νοικοκυρές που αγόρασαν για πρώτη φορά πλυντήριο ( γιατί το απαιτούσαν οι καιροί ) αλλά το χρησιμοποιούσαν για να βάζουν επάνω τη σκάφη και να πλένουν με τον παραδοσιακό τρόπο με τη δικαιολογία ότι αυτά είναι λευκά ή ευαίσθητα και το πλυντήριο  θα μου τα χαλάσει. Continue reading «Βοήθειααα … οι Ταυτότητες!!!»

Επίλυση δευτεροβάθμιας εξίσωσης

Αφού είδαμε θεωρητικά το πως μπορούμε να βρούμε τις λύσεις μιας δευτεροβάθμιας εξίσωσης, καλό θα ήταν να το εφαρμόσουμε και στην πράξη

Continue reading «Επίλυση δευτεροβάθμιας εξίσωσης»

Θέλω να μάθω … πως να βρίσκω τις λύσεις σε μια εξίσωση 2ου βαθμού

Εξίσωση 2ου βαθμού (ή δευτεροβάθμια εξίσωση) είναι η εξίσωση που περιέχει έναν άγνωστο (π.χ. τον x) και έχει ή μπορεί να πάρει τη μορφή \alpha\chi^2+\beta\chi+\gamma=0 με \alpha\neq0.

Όταν μας δώσουν μια εξίσωση για να βρούμε τις λύσεις της και δεν είναι στη παραπάνω μορφή δεν γνωρίζουμε αν πράγματι είναι δευτεροβάθμια εξίσωση ή όχι. Γι’ αυτό είμαστε υποχρεωμένοι να κάνουμε κάποια «προεργασία» ώστε να είμαστε σε θέση να αντιληφθούμε το βαθμό της εξίσωσης και κατόπιν να ψάξουμε να βρούμε τις λύσεις. Γιατί με άλλο τρόπο δουλεύουμε στις εξισώσεις πρώτου βαθμού, με άλλο σε αυτές που είναι δεύτερου βαθμού, διαφορετικά στις τριτοβάθμιες κ.ο.κ. Όσον αφορά στις πρωτοβάθμιες εξισώσεις έχουμε δώσει τη μεθοδολογία εδώ.

Η «προεργασία» λοιπόν που πρέπει να γίνει είναι ήδη γνωστή, θα πρέπει:

(πολλαπλασιάζοντας όλους τους όρους με το ΕΚΠ των παρονομαστών)

  • να διώξουμε τις παρενθέσεις
    (με χρήση της επιμεριστικής ιδιότητας) και τέλος
  • να κάνουμε αναγωγή όμοιων όρων
    (να «συμμαζέψουμε» την εξίσωση προσθέτοντας μεταξύ τους τους όμοιους όρους)

Σε αυτό το σημείο είμαστε σε θέση να δούμε το βαθμό της εξίσωσης και αν

  • ο άγνωστος δεν είναι υψωμένος σε καμία δύναμη, τότε έχουμε να λύσουμε μια πρωτοβάθμια εξίσωση κατά τα γνωστά (χωρίζουμε γνωστούς – άγνωστους κ.τ.λ.)
  • η μεγαλύτερη δύναμη στην οποία εμφανίζεται ο άγνωστος είναι το τετράγωνο, τότε είμαστε στη περίπτωση της δευτεροβάθμιας εξίσωσης και η διαδικασία που ακολουθούμε για να βρούμε τις λύσεις είναι η παρακάτω:
  1. Μεταφέρουμε όλους τους όρους στο ένα μέλος ώστε η εξίσωση να πάρει τη μορφή

        \[\alpha\chi^2+\beta\chi+\gamma=0\]

  2. Ξεκαθαρίζουμε ποιοι αριθμοί παίζουν το ρόλο των α, β και γ (α: ο συντελεστής του χ2, β: ο συντελεστής του χ και γ ο σταθερός όρος).
  3. Με τη βοήθεια των α, β, γ και του τύπου

        \[\Delta=\beta^2-4\alpha\gamma\]

    υπολογίζουμε ένα νέο αριθμό τον Δ που λέγεται «Διακρίνουσα» (διάβασε το Σχόλιο1 παρακάτω)

  4. Από το «είδος» αυτού του αριθμού, του Δ, εξαρτάται κα το πως θα προχωρήσουμε παρακάτω. Και πιο συγκεκριμένα:
    • αν η Διακρίνουσα (Δ) είναι αρνητικός αριθμός, τότε η εξίσωση μας δεν έχει λύσεις, είναι όπως λέμε σε τέτοιες περιπτώσεις αδύνατη
    • αν η Διακρίνουσα (Δ) είναι θετικός αριθμός, τότε η εξίσωση έχει 2 λύσεις διαφορετικές μεταξύ τους και που τις υπολογίζουμε από τους τύπους

          \[\chi_1=\frac{-\beta-\sqrt{\Delta}}{2\alpha}\]

      και

          \[\chi_2=\frac{-\beta+\sqrt{\Delta}}{2\alpha}\]

      (διάβασε το Σχόλιο2)

    • αν η Διακρίνουσα (Δ) είναι ίση με 0, τότε η εξίσωση έχει δύο ίσες λύσεις (ή όπως συνήθως λέμε μια διπλή λύση) που μπορούμε να υπολογίσουμε από τον τύπο

          \[\chi_1=\chi_2=\frac{-\beta}{2\alpha}\]

      (Σχόλιο3)

Συνοπτικά η διαδικασία που ακολουθούμε ώστε να βρούμε τις λύσεις σε μια εξίσωση της μορφής

    \[\alpha\chi^2+\beta\chi+\gamma=0\]

καθώς και οι περιπτώσεις που μπορούν να προκύψουν φαίνονται στο σχήμα που ακολουθεί:

Λυμένα παραδείγματα για να κατανοήσουμε καλύτερα αυτά που αναφέραμε θα δείτε στο επόμενο άρθρο.

Σχόλιο1:

Η παράσταση \beta^2-4\alpha\gamma συμβολίζεται με Δ και λέγεται «Διακρίνουσα». Η ονομασία δεν είναι τυχαία γιατί η διακρίνουσα μας βοηθάει να διακρίνουμε το πλήθος των ριζών (λύσεων) της εξίσωσης. Πράγματι,

  • Δ<0\Leftrightarrow 0 λύσεις
  • Δ=0\Leftrightarrow 1 λύση διπλή
  • Δ>0\Leftrightarrow 2 λύσεις διαφορετικές

Επιστροφή

Σχόλιο2:

Οι δύο αυτοί τύποι μπορούν να γραφούν σε έναν πιο συμμαζεμένο:

    \[\chi_1,\chi_2=\frac{-\beta\pm\sqrt{\Delta}}{2a}\]

Επιστροφή

Σχόλιο3:

Στην πραγματικότητα ο τύπος αυτός δεν είναι κάποιος νέος τύπος που πρέπει να απομνημονεύσουμε αρκεί να ξέρουμε απ’ έξω τον προηγούμενο τύπο αφού από εκεί προκύπτει και αυτός μόνο που τώρα το Δ είναι 0. Πράγματι,

    \[\chi=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-\beta\pm\sqrt{0}}{2\alpha}=\frac{-\beta\pm0}{2\alpha}=\frac{-\beta}{2\alpha}\]

Επιστροφή