Θέλω να μάθω … πως να βρίσκω τις λύσεις σε μια εξίσωση 2ου βαθμού

Εξίσωση 2ου βαθμού (ή δευτεροβάθμια εξίσωση) είναι η εξίσωση που περιέχει έναν άγνωστο (π.χ. τον x) και έχει ή μπορεί να πάρει τη μορφή \alpha\chi^2+\beta\chi+\gamma=0 με \alpha\neq0.

Όταν μας δώσουν μια εξίσωση για να βρούμε τις λύσεις της και δεν είναι στη παραπάνω μορφή δεν γνωρίζουμε αν πράγματι είναι δευτεροβάθμια εξίσωση ή όχι. Γι’ αυτό είμαστε υποχρεωμένοι να κάνουμε κάποια «προεργασία» ώστε να είμαστε σε θέση να αντιληφθούμε το βαθμό της εξίσωσης και κατόπιν να ψάξουμε να βρούμε τις λύσεις. Γιατί με άλλο τρόπο δουλεύουμε στις εξισώσεις πρώτου βαθμού, με άλλο σε αυτές που είναι δεύτερου βαθμού, διαφορετικά στις τριτοβάθμιες κ.ο.κ. Όσον αφορά στις πρωτοβάθμιες εξισώσεις έχουμε δώσει τη μεθοδολογία εδώ.

Η «προεργασία» λοιπόν που πρέπει να γίνει είναι ήδη γνωστή, θα πρέπει:

(πολλαπλασιάζοντας όλους τους όρους με το ΕΚΠ των παρονομαστών)

  • να διώξουμε τις παρενθέσεις
    (με χρήση της επιμεριστικής ιδιότητας) και τέλος
  • να κάνουμε αναγωγή όμοιων όρων
    (να «συμμαζέψουμε» την εξίσωση προσθέτοντας μεταξύ τους τους όμοιους όρους)

Σε αυτό το σημείο είμαστε σε θέση να δούμε το βαθμό της εξίσωσης και αν

  • ο άγνωστος δεν είναι υψωμένος σε καμία δύναμη, τότε έχουμε να λύσουμε μια πρωτοβάθμια εξίσωση κατά τα γνωστά (χωρίζουμε γνωστούς – άγνωστους κ.τ.λ.)
  • η μεγαλύτερη δύναμη στην οποία εμφανίζεται ο άγνωστος είναι το τετράγωνο, τότε είμαστε στη περίπτωση της δευτεροβάθμιας εξίσωσης και η διαδικασία που ακολουθούμε για να βρούμε τις λύσεις είναι η παρακάτω:
  1. Μεταφέρουμε όλους τους όρους στο ένα μέλος ώστε η εξίσωση να πάρει τη μορφή

        \[\alpha\chi^2+\beta\chi+\gamma=0\]

  2. Ξεκαθαρίζουμε ποιοι αριθμοί παίζουν το ρόλο των α, β και γ (α: ο συντελεστής του χ2, β: ο συντελεστής του χ και γ ο σταθερός όρος).
  3. Με τη βοήθεια των α, β, γ και του τύπου

        \[\Delta=\beta^2-4\alpha\gamma\]

    υπολογίζουμε ένα νέο αριθμό τον Δ που λέγεται «Διακρίνουσα» (διάβασε το Σχόλιο1 παρακάτω)

  4. Από το «είδος» αυτού του αριθμού, του Δ, εξαρτάται κα το πως θα προχωρήσουμε παρακάτω. Και πιο συγκεκριμένα:
    • αν η Διακρίνουσα (Δ) είναι αρνητικός αριθμός, τότε η εξίσωση μας δεν έχει λύσεις, είναι όπως λέμε σε τέτοιες περιπτώσεις αδύνατη
    • αν η Διακρίνουσα (Δ) είναι θετικός αριθμός, τότε η εξίσωση έχει 2 λύσεις διαφορετικές μεταξύ τους και που τις υπολογίζουμε από τους τύπους

          \[\chi_1=\frac{-\beta-\sqrt{\Delta}}{2\alpha}\]

      και

          \[\chi_2=\frac{-\beta+\sqrt{\Delta}}{2\alpha}\]

      (διάβασε το Σχόλιο2)

    • αν η Διακρίνουσα (Δ) είναι ίση με 0, τότε η εξίσωση έχει δύο ίσες λύσεις (ή όπως συνήθως λέμε μια διπλή λύση) που μπορούμε να υπολογίσουμε από τον τύπο

          \[\chi_1=\chi_2=\frac{-\beta}{2\alpha}\]

      (Σχόλιο3)

Συνοπτικά η διαδικασία που ακολουθούμε ώστε να βρούμε τις λύσεις σε μια εξίσωση της μορφής

    \[\alpha\chi^2+\beta\chi+\gamma=0\]

καθώς και οι περιπτώσεις που μπορούν να προκύψουν φαίνονται στο σχήμα που ακολουθεί:

Λυμένα παραδείγματα για να κατανοήσουμε καλύτερα αυτά που αναφέραμε θα δείτε στο επόμενο άρθρο.

Σχόλιο1:

Η παράσταση \beta^2-4\alpha\gamma συμβολίζεται με Δ και λέγεται «Διακρίνουσα». Η ονομασία δεν είναι τυχαία γιατί η διακρίνουσα μας βοηθάει να διακρίνουμε το πλήθος των ριζών (λύσεων) της εξίσωσης. Πράγματι,

  • Δ<0\Leftrightarrow 0 λύσεις
  • Δ=0\Leftrightarrow 1 λύση διπλή
  • Δ>0\Leftrightarrow 2 λύσεις διαφορετικές

Επιστροφή

Σχόλιο2:

Οι δύο αυτοί τύποι μπορούν να γραφούν σε έναν πιο συμμαζεμένο:

    \[\chi_1,\chi_2=\frac{-\beta\pm\sqrt{\Delta}}{2a}\]

Επιστροφή

Σχόλιο3:

Στην πραγματικότητα ο τύπος αυτός δεν είναι κάποιος νέος τύπος που πρέπει να απομνημονεύσουμε αρκεί να ξέρουμε απ’ έξω τον προηγούμενο τύπο αφού από εκεί προκύπτει και αυτός μόνο που τώρα το Δ είναι 0. Πράγματι,

    \[\chi=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-\beta\pm\sqrt{0}}{2\alpha}=\frac{-\beta\pm0}{2\alpha}=\frac{-\beta}{2\alpha}\]

Επιστροφή

Η εξίσωση της Ευθείας

Η εξίσωση ψ=λχ+β είναι γνωστό ότι παριστάνει μια ευθεία. Όμως ποιος ο ρόλος του λ και ποιος του β στην εξίσωση αυτή;

Είναι γνωστό ότι η αλγεβρική μορφή της εξίσωσης μιας ευθείας είναι η

Γραφική παράσταση
Κάντε κλικ στην εικόνα να δείτε το ρόλο των λ και β

y=\lambda\cdot\chi+\beta  (\epsilon), όπου

  • ο (πραγματικός) αριθμός λ  ονομάζεται «συντελεστής διεύθυνσης» και εκφράζει την κλίση της ευθείας σε σχέση με τονημιάξονα Οχ και
  • ο αριθμός β δηλώνει τη θέση πάνω στον άξονα ψ΄ψ από την οποία διέρχεται η ευθεία.

Αυτό με το οποίο θα ασχοληθούμε σήμερα είναι το πως μπορούμε να βρούμε την εξίσωση μιας ευθείας, δηλαδή με άλλα λόγια να υπολογίσουμε τους αριθμούς λ και β.

Για να μπορέσουμε να βρούμε την εξίσωση θα πρέπει οπωσδήποτε να γνωρίζουμε (να μας έχουν δώσει δηλαδή)

  1. το συντελεστή διεύθυνσης (λ) και
  2. ένα σημείο έστω Α(χΑΑ) από το οποίο διέρχεται η ευθεία που ψάχνουμε.

Για παράδειγμα ας βρούμε την ευθεία που έχει συντελεστή διεύθυνσης 2 και διέρχεται από το σημείο Α(1,3).

Λύση:

Η εξίσωση της ευθείας (\epsilon) θα έχει τη μορφή:

y=\lambda\cdot\chi+\beta

όμως μας έχουν δώσει ότι το λ=2,

y=2\cdot\chi+\beta

Για να δούμε τώρα πως θα υπολογίσουμε το β.

Έχουμε αναφέρει σε προηγούμενο άρθρο ότι,

«Όταν η γραφική παράσταση μιας συνάρτησης διέρχεται από κάποιο σημείο, τότε οι συντεταγμένες του σημείου επαληθεύουν την εξίσωση (τον τύπο) της συνάρτησης αυτής»

κι έτσι

[warning]Όταν μας δίνουν εξίσωση ευθείας και σημείο από το οποίο διέρχεται η ευθεία αυτή πάντα αντικαθιστούμε τις συντεταγμένες του σημείου στην εξίσωση της ευθείας.[/warning]

Ας το εφαρμόσουμε στην συγκεκριμένη περίπτωση να δούμε. Αντικαθιστούμε λοιπόν το χ με τον αριθμό 1 και το ψ με τον αριθμό 3 κι έχουμε:

y=2\cdot\chi+\beta ,για χ=1 και y=3

3=2\cdot1+\beta

προέκυψε λοιπόν μια εξίσωση με μοναδικό άγνωστο το β, το οποίο και υπολογίζουμε

3-2=\beta\Leftrightarrow\beta=1

Βρήκαμε λοιπόν ότι η ευθεία με συντελεστή διεύθυνσης λ=2 που διέρχεται από το σημείο Α(1,3) είναι η

y=2x+1.

Σχόλια:

  • Θυμηθείτε τι έχουμε αναφέρει προηγούμενα » όσα πράγματα μας ζητούν τόσα πρέπει και να μας δίνουν γιαυτό αναζητήστε τα στην εκφώνηση της άσκησης.

[notice]

Tip 1:

Πλήθος Ζητούμενων = Πλήθος Δεδομένων

[/notice]


  • Αυτή την άσκηση είμαι σίγουρος ότι θα την χαρακτηρίσετε ως εύκολη. Σας πληροφορώ όμως ότι είναι η μοναδική κατηγορία ασκήσεων στην αναζήτηση της εξίσωσης μιας ευθείας. Οποιαδήποτε άλλη κι αν δείτε δεν έχει τίποτα  παραπάνω τίποτα λιγότερο. Αυτό που κάνει κάποιες ασκήσεις της κατηγορίας αυτής πιο σύνθετες είναι ο τρόπος με τον οποίο δίνονται τα απαραίτητα στοιχεία δηλαδή ο συντελεστής διεύθυνσης και το σημείο.
    Ακριβώς στο επόμενο άρθρο μας θα δούμε αυτό ακριβώς το «παιχνίδι», με ποιους τρόπους είναι δυνατό να δοθεί (έμμεσα) το λ και με ποιους τρόπους το σημείο.

 

[important]

Tip 2:

Για να βρούμε την εξίσωση μιας ευθείας πρέπει απαραίτητα  να μας δίνουν (άμεσα ή έμμεσα)

[gn_list style=»guard»]

  • το συντελεστή διεύθυνσης
  • ένα σημείο της.

[/gn_list]

[/important]


Μέχρι τότε μπορείτε εσείς να δοκιμάσετε να λύσετε την  παρακάτω άσκηση και να μας στείλετε την απάντηση (στα σχόλια του άρθρου) καθώς κι οποιαδήποτε απορία έχετε, ή κάποιο σχόλιο που θέλετε να κάνετε.

Μπορείτε φυσικά να επικοινωνήσετε και με e-mail.

Άσκηση:

Να βρεθεί η ευθεία (3) που έχει συντελεστή διεύθυνσης διπλάσιο από τον συντελεστή διεύθυνσης της ευθείας  (δ):2ψ+4χ=3 αν γνωρίζετε ότι το σημείο Α(-3,8) είναι σημείο της (ε).

Συνεχίζεται…>>>

Εξίσωση Ευθείας

Μια λυμένη άσκηση στην εξίσωση της ευθείας για τους μαθητές της Γ΄ Γυμνασίου που για τη λύση της επιλύουμε σύστημα.

Άσκηση:

Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία Α(2,7) και Β(1,-3).

Λύση:

Όπως ξέρουμε όλες οι ευθείες έχουν την ίδια αλγεβρική μορφή, όλες είναι της μορφή: y=ax+b (εκτός από τις κατακόρυφες φυσικά)

Εμείς εδώ καλούμαστε να υπολογίσουμε τους αριθμούς a και b. Αφού λοιπόν μας ζητάνε δύο πράγματα θα πρέπει να μας έχουν δώσει και δύο πληροφορίες τις οποίες και θα πρέπει να εκμεταλλευτούμε.Προφανώς στη συγκεκριμένη άσκηση οι δύο πληροφορίες είναι ότι τα σημεία Α και Β είναι σημεία αυτής της ευθείας. Τι σημαίνει όμως αυτό για μας και πως μπορούμε να το χρησιμοποιήσουμε;

«Όταν η γραφική παράσταση μιας συνάρτησης διέρχεται από κάποιο σημείο, τότε οι συντεταγμένες του σημείου επαληθεύουν την εξίσωση (τον τύπο) της συνάρτησης αυτής»

Δηλαδή, αν αντικαταστήσουμε τις συντεταγμένες του σημείου (x,y) στην εξίσωση της συνάρτησης, προκύπτει μια «αληθής» πρόταση. Αυτό λοιπόν θα κάνουμε κι εδώ, θα αντικαταστήσουμε τις συντεταγμένες των σημείων Α και Β στην εξίσωση y=ax+b κι θα προκύψουν δύο εξισώσεις (με δύο άγνωστους, τους a και b.

Πράγματι,

για το σημείο Α(2,7) έχουμε

    \[7=2a+b\]

ενώ για το σημείο Β(1,-3) έχουμε

    \[-3=a+b\]

Στο σύστημα που προέκυψε αφαιρούμε τις δύο εξισώσεις κατά μέλη ώστε να «εξαφανιστεί» το b και θα έχουμε την εξίσωση

    \[10=a\]

Επανερχόμαστε τώρα σε μια από τις δύο εξισώσεις του συστήματος (προφανώς σε αυτή που θεωρούμε ευκολότερη), αντικαθιστούμε το a με τον αριθμό 10 και υπολογίζουμε το b.

Ας υποθέσουμε ότι επιλέγουμε την-3=a+b που για a=10 δίνει

    \[-3=10+b\]

    \[-10-3=b\]

δηλαδή

    \[b=-13\]

κι έτσι η ευθεία που ψάχναμε ήταν η:

    \[y=10x-13\]

[gn_box type=»warning» title=»Tip 1″]

Όταν μας δίνουν εξίσωση ευθείας και σημείο από το οποίο διέρχεται η ευθεία αυτή πάντα αντικαθιστούμε τις συντεταγμένες του σημείου στην εξίσωση της ευθείας.[/gn_box]

[gn_box type=»warning» title=»Tip 2″]

Για να λύσουμε σύστημα που προέκυψε από εξίσωση ευθείας όπως στην παραπάνω άσκηση, ο συντομότερος τρόπος είναι να αφαιρέσουμε τις εξισώσεις κατά μέλη.[/gn_box]

Δοκιμάστε κι εσείς να λύσετε την παρακάτω άσκηση και στείλτε μας την απάντηση(στα σχόλια αυτού του άρθρου ή με email).

Να βρεθεί η εξίσωση της ευθείας που τέμνει τον άξονα χ΄χ στο σημείο με τετμημένη -1 ενώ τον ψ΄ψ στο σημείο με τεταγμένη 1. Καλή επιτυχία.