μπορούμε να δούμε μερικά παραδείγματα για να κατανοήσουμε καλύτερα το πως δουλεύουμε σε ασκήσεις που μας ζητάνε να
Σύνθεση με ευθείες γραμμές
βρούμε την εξίσωση κάποιας ευθείας.
Να βρεθεί η εξίσωση της ευθείας (ε) στις παρακάτω περιπτώσεις:
1. Διέρχεται από το σημείο Α(2,1) και σχηματίζει με τον άξονα χ΄χ γωνία ω=45ο.
Λύση: Η εξίσωση που ζητάμε θα έχει τη μορφή: .
Όμως λ=εφω=εφ45ο=1, κι έτσι η εξίσωση παίρνει τη μορφή .
Κι επειδή το σημείο Α(2,1) είναι σημείο αυτής της ευθείας θα πρέπει να ισχύει: , δηλαδή β=-1.
Οπότε η ζητούμενη ευθεία είναι η .
2. Διέρχεται από το σημείο Α(1,-1) και είναι παράλληλη στην ευθεία (δ): 2χ+ψ-1=0.
Λύση: Η ευθεία που ζητάμε είναι της μορφής . Επειδή ε//δ θα ισχύει λε=λδ, αλλά ο συντελεστής διεύθυνσης της (δ) είναι λδ=-2, (γιατί (δ): 2χ+ψ-1=0 ή (δ): ψ=-2χ+1) κι έτσι λε=λδ=-2.
Η ευθείας μας λοιπόν έχει τώρα τη μορφή . Περνάει όμως από το σημείο Α(1,-1) πράγμα που σημαίνει ότι θα ισχύει . Τελικά η ευθεία (ε) είναι η .
3. Διέρχεται από το Α(-1,1) και είναι κάθετη στην (δ):ψ=-2χ-1.
Λύση: λδ=-2, όμως (ε) κάθετη με τη (δ) άρα έχουμε . Η ευθεία που ψάχνουμε λοιπόν θα είναι κάπως έτσι: ψ=1/2χ+β.
Για να βρούμε το β τώρα μας αρκεί το γνωστό σημείο της ευθείας το Α(-1,1) γιατί ξέρουμε ότι θα ισχύει άρα η ευθεία μας είναι η ψ=1/2χ+3/2.
4. Τέμνει τους άξονες στα σημεία Α(4,0) και Β(0,4)
Λύση: Υπολογίζουμε το λ, . Επομένως η εξίσωση της ευθείας θα έχει τη μορφή ψ=-χ+β. Όσον αφορά στο β τώρα θα χρησιμοποιήσουμε ένα από τα δύο σημεία από τα οποία διέρχεται η ευθεία που ζητάμε. Έστω λοιπόν ότι χρησιμοποιούμε το Β(0,4) και με αντικατάσταση παίρνουμε 4=-0+β ή β=4. Καταλήξαμε λοιπόν στο ότι η ζητούμενη ευθεία είναι η ψ=-χ+4.
Παρατηρήσεις:
Οι παρακάτω παρατηρήσεις αφορούν μαθητές της Β΄και Γ΄τάξης του Λυκείου που ακολουθούν τη θετική ή την τεχνολογική κατεύθυνση.
Παρατήρηση 1:
Οι παραπάνω ασκήσεις θα μπορούσαν προφανώς να λυθούν πιο εύκολα με τη χρήση του τύπου
όπου Μ(χ0,ψ0) ένα σημείο της ευθείας και λ ο συντελεστής διεύθυνσής της. Να το δούμε σαν εφαρμογή στην παρακάτω άσκηση:
Να βρεθεί η μεσοκάθετη του τμήματος ΑΒ με Α(-2,1) και Β(2,3)
Λύση: Ο συντελεστής διεύθυνσης της ΑΒ είναι
κι επειδή η μεσοκάθετη της ΑΒ είναι κάθετη με την ΑΒ θα ισχυεί:
.
Η μεσοκάθετη της ΑΒ θα διέρχεται από το μέσο του ΑΒ που είναι το Μ() δηλαδή Μ()=(0,2).
Έτσι η μεσοκάθετη έχει την εξίσωση:
, αφού έχει συντελεστή διεύθυνσης το λ=-2 και διέρχεται απο το Μ(0,2).
Παρατήρηση 2:
Σε όλα όσα έχουμε αναφέρει μέχρι τώρα γιά την εξίσωση της ευθείας έχουμε κάνει μια σημαντική παράλειψη. Είδαμε πως γιά να βρούμε την εξίσωση μιας ευθείας πρέπει οπωσδήποτε να μας δίνεται ένα σημείο της έστω Μ(α,β). Από ‘κει και πέρα υπολογίζω το λ (μέσω της γωνίας που σχηματίζει με τον χ΄χ ή μέσω μιας σχέσης παραλληλίας ή μιας σχέσης καθετότητας ή τέλος από δύο σημεία της ευθείας). Και τελικά βρίσκω την εξίσωση από τον τύπο ψ=λχ+μ ή από τον . Κι εδώ βρίσκεται το λάθος γιατί από το σημείο Μ(α,β) διέρχονται άπειρες ευθείες αλλά οι παραπάνω τύποι μας δίνουν μόνο την οριζόντια και τις πλάγιες που διέρχονται από το Μ κι όχι την κατακόρυφη κι αυτό γιατί για την κατακόρυφη δεν υπάρχει (δεν ορίζεται) συντελεστής διεύθυνσης. Αυτό σημαίνει ότι με τον τύπο έχω «χάσει» μια ευθεία που διέρχεται από το Μ(α,β) και συγκεκριμμένα την χ=α. Πρέπει λοιπόν όταν ξεκινάμε να λύσουμε μια άσκηση στην οποία ψάχνουμε μια ευθεία που διέρχεται από κάποιο σημείο π.χ. το Μ(1,3) να λέμε: «από το Μ(1,3) διέρχονται οι ευθείες χ=1 (κατακόρυφη) και οι ευθείες ψ-3=λ(χ-1)» στη συνέχεια να εξετάζουμε αν η κατακόρυφη ικανοποιεί τα δεδομένα του προβλήματος οπότε είναι αυτή που ψάχνουμε κι αν όχι συνεχίζουμε με τις υπόλοιπες. Ας δούμε ένα παράδειγμα και τέλος γιατί έχω την εντύπωση ότι αρκετά σας κούρασα.
Να βρεθεί η ευθεία που είναι κάθετη στο διάνυσμα και διέρχεται από το Μ(4,5).
Λύση: Από το Μ(4,5) διέρχονται οι ευθείες χ=4 (κατακόρυφη) και οι ευθείες ψ-5=λ(χ-4). Επειδή ο συντελεστής διεύθυνσης του διανύσματος είναι λ=ψ/χ=0/3=0, το διάνυσμα είναι οριζόντιο (παράλληλο στον χ΄χ) κι έτσι η ευθεία που ζητάμε θα είναι κατακόρυφη κι αφού πρέπει να περνάει από το Μ(4,5) είναι η χ=4.
Παραγοντοποίηση είναι η μετατροπή ενός αριθμού, ή μιας αλγεβρικής παράστασης σε γινόμενο.
Γιά παράδειγμα μπορούμε να παραγοντοποιήσουμε τον αριθμό 12 και να τον γράψουμε 2.6, αφού 12=2.6. Οι αριθμοί 2 και 6 λέγονται παράγοντες (ή διαιρέτες) του 12. Με την ανάλυση αριθμού σε γινόμενο δεν θα ασχοληθούμε εδώ, αυτό το
κάναμε πολλά χρόνια πριν στο Δημοτικό και στη Α΄ Γυμνασίου (θυμηθείτε την ανάλυση ενός σύνθετου αριθμού σε γινόμενο πρώτων παραγόντων, όπου το 12 το γράφαμε ). Στο άρθρο αυτό θα δούμε με ποιούς τρόπους μπορούμε μια αλγεβρική παράσταση να τη παραγοντοποιήσουμε, δηλαδή να την μετατρέψουμε σε γινόμενο. Πριν ξεκινήσουμε όμως ας κάνουμε μερικές παρατηρήσεις και πρώτα απ’ όλα να πούμε ότι δεν παραγοντοποιούνται όλες οι αλγεβρικές παραστάσεις άλλες γίνονται γινόμενο κι άλλες όχι. Επίσης να πούμε ότι οι τρόποι που θα παρουσιάσουμε εδώ δεν είναι οι μοναδικοί αλλά είναι μόνο αυτοί που μπορεί να χρησιμοποιήσει ένας μαθητής της Γ΄ Γυμνασίου με αυτά που έχει διδαχθεί μέχρι τώρα και σύμφωνα με τη νέα ύλη (έκδοση light δηλαδή). Για τους μαθητές της Α΄ Λυκείου έχουμε επιπλέον τρόπους και για τους μαθητές της Β΄ Λυκείου ακόμη περισσότερους.
Πως γίνεται η παραγοντοποίηση
Όταν μας δωθεί μια αλγεβρική παράσταση και για κάποιο λόγο πρέπει να την μετατρέψουμε σε γινόμενο ακολουθούμε τα παρακάτω βήματα:
Ελέγχουμε αν μπορούμε να εφαρμόσουμε τη μέθοδο του Κοινού Παράγοντα. Αν ναι έχει καλώς την εφαρμόζουμε και τελειώσαμε (συνήθως) αν όχι τότε πάμε στην
Μέθοδο της Ομαδοποίησης αλλά αν δεν εφαρμόζεται ούτε κι αυτή θα κοιτάξουμε μήπως μπορούμε να
Κάνουμε χρήση των Ταυτοτήτων
Εξετάζουμε μήπως η παράσταση που έχουμε είναι τριώνυμο
Ας δούμε όμως αυτές τις μεθόδους αναλυτικά:
[su_tabs style=1]
[su_tab title=»Κοινός Παράγοντας»]
Στην αλγεβρική παράσταση 2χ+2ψ+14ω, τα 2χ, 2ψ και 14ω λέγονται «όροι» της παράστασης. Στον όρο 2χ οι 2 και χ λέγονται παράγοντες του 2χ, ανάλογα το2 και ψ έιναι οι παράγοντες του 2ψ και οι 14 και ω οι παράγοντες του 14ω.
Παρατηρούμε ότι ο αριθμός 2 είναι «κοινός παράγοντας» αφού εμφανίζεται σε όλους τους όρους. Στους 2χ και 2ψ είναι προφανές ενώ στον όρο 14ω είναι κρυμμένος μέσα στο 14 (14=2.7).
Όταν λοιπόν στην παράσταση που θέλουμε να μετατρέψουμε σε γινόμενο είμαστε «τυχεροι» και υπάρχει κοινός παράγοντας τότε κάνουμε χρήση της επιμεριστικής ιδιότητας ( α(β+γ)=αβ+αγ ). Έτσι η παράσταση 2χ+2ψ+14ω γίνεται 2χ+2ψ+14ω=2χ+2ψ+2.7ω=2(χ+ψ+7ω) που έγινε γινόμενο και τελειώσαμε.
Όταν κοιτάμε μήπως υπάρχει κάποιος κοινός παράγοντας, κοιτάμε για κοινό αριθμό ή κοινό γράμμα ή ακόμη και για κοινή παρένθεση. Δείτε τα παραδείγματα παρακάτω:
2χ-αχ+βχ2=χ(2 – α+βχ), κοινός παράγοντας ήταν το χ που υπήρχε παντου αφού 2χ-αχ+βχ2=2χ-αχ+βχχ.
3κ(χ+ψ)+6α(χ+ψ)-12β(χ+ψ)=3(χ+ψ)(κ+2α-4β), κοινός παράγοντας ήταν το 3 που είναι κρυμμένο και στο 6 και στο 12 αλλά και η παρένθεση (χ+ψ).
Παρατηρήσεις:
(α) Για να βρούμε τι θα γράψουμε μέσα στη παρένθεση αφού βγάλουμε τον κοινό παράγοντα, διαιρούμε κάθε όρο με τον κοινό παράγοντα (αν και συνήθως είναι προφανές και δεν κάνουμε τη διαίρεση).
π.χ. Στην παράσταση 4χψ2+2χ2ψ-2χψ κοινός παράγοντας είναι το 2χψ κι έτσι θα γράψουμε 2χψ.(κάτι). Για να βρούμε αυτό το κάτι κάνουμε 4χψ2/2χψ+2χ2ψ/2χψ-2χψ/2χψ=2ψ+χ-1.
Τελικά 4χψ2+2χ2ψ-2χψ=2χψ(2ψ+χ-1).
(β) Για να ελέγξουμε αν η παραγγοντοποίηση έγινε σωστά μπορούμε να κάνουμε επιμεριστική στο αποτέλεσμα και θα πρέπει οπωσδήποτε να προκύψει το πρώτο μέλος.
Έτσι στο προηγούμενο παράδειγμα έχουμε 2χψ(2ψ+2χ-1)=2χψ.2ψ+2χψ.2χ-2χψ.1=4χψ2+4χ2ψ-2χψ.
(γ) Μερικές φορές είναι χρήσιμο να βγάζουμε κοινό παράγοντα κάποιον αριθμό που μπροστά του να έχει πρόσημο – . Σε αυτές τις περιπτώσεις οι όροι που παραμένουν στην παρένθεση έχουν αντίθετο πρόσημο από αυτό που είχαν. Για παράδειγμα στην παράσταση 2χ – 2ψ μπορώ να βγάλω κοινό παράγοντα το 2 και να γίνει 2χ – 2ψ=2(χ-ψ) αλλά θα μπορούσα να βγάλω κοινό παράγοντα και το -2, αν το ήθελα, τότε θα είχαμε 2χ – 2ψ = -2(-χ+ψ).
(δ) Αν κάποιος παράγοντας εμφανίζεται με διαφορετικές δυνάμεις επιλέγουμε να βγάλουμε κοινό παράγοντα αυτόν με τη μικρότερη δύναμη. π.χ. 2α3(χ+ψ)2+4α2(χ+ψ)3=2α2(χ+ψ)2(α+2(χ+ψ))=2α2(χ+ψ)2(α+2χ+2ψ).
[/su_tab]
[su_tab title=»Ομαδοποίηση»]
Επειδή δεν θα είμαστε πάντα τυχεροί να έχουμε κοινό παράγοντα όπως στην περίπτωση της παράστασης 2αχ+4αψ+3βχ+6βψ, τότε κοιτάμε μήπως αν χωρίσουμε τους όρους σε ομάδες καταφέρουμε να βρούμε κοινό παράγοντα. Πράγματι οι όροι 2αχ και 4αψ έχουν κοινό παράγοντα το 2α, οπότε 2αχ+4αψ=2α(χ+2ψ), ενώ οι όροι 3βχ και 6βψ έχουν κοινό παράγοντα το 3β, οπότε 3βψ+6βψ=3β(χ+2ψ). Για να δούμε τι μπορούμε να κάνουμε τώρα, μέχρι στιγμής έχουμε 2αχ+4αψ+3βχ+6βψ=2α(χ+2ψ)+3β(χ+2ψ). Οι όροι από 4 έγιναν 2 και μάλιστα έχουν κοινό παράγοντα την παρένθεση (χ+2ψ), άρα
2αχ+4αψ+3βχ+6βψ=2α(χ+2ψ)+3β(χ+2ψ)=(χ+2ψ)(2α+3β).
Η μέθοδος που ακολουθήσαμε εδώ λέγεται «ομαδοποίηση» ή παραγοντοποίηση κατά ομάδες και ο λόγος είναι προφανής αφού αναγκαστήκαμε να χωρίσουμε την παράσταση σε ομάδες και να βγάλουμε κοινό παράγοντα σε κάθε ομάδα χωριστά.
Παρατηρήσεις:
(α) Στη μέθοδο της ομαδοποίησης ποτέ δεν τελειώνουμε αμέσως αλλά υπάρχουν πάντα δύο στάδια. Αφού τελειώσουμε την παραγοντοποίηση κάθε ομάδας πρέπει οι παρενθέσεις που θα μείνουν να είναι ίδιες ώστε να ξαναβγεί κοινός παράγοντας.
(β) Αν οι παρενθέσεις που θα μείνουν κατά το πρώτο στάδιο δεν είναι ίδιες μάλλον έχουμε διαλέξει λάθος ομάδες. Ξαναδοκιμάζουμε λοιπόν παίρνοντας διαφορετικές ομάδες. π.χ. Για να παραγοντοποιήσω την αχ3+2αβ+βχ2+2α2χ κάνω τα εξής: αχ3+2αβ+βχ2+2α2χ=(αχ3+2αβ)+(βχ2+2α2χ)=α(χ3+2β)+χ(βχ+2α2) και δεν μπορώ να συνεχίσω στο δεύτερο στάδιο αφού οι παρενθέσεις δεν είναι ίδιες κι επομένως δεν έχω κοινό παράγοντα. Αν όμως διαλέξουμε διαφορετικές ομάδες: αχ3+2αβ+βχ2+2α2χ=(αχ3+βχ2)+(2αβ+2α2χ)=χ2(αχ+β)+2α(β+αχ)=(αχ+β)(χ2+2α) είμαστε εντάξει.
(γ) Αν οι παρενθέσεις που θα μας μείνουν κατά το πρώτο στάδιο της παραγοντοποίησης κατά ομάδες είναι αντίθετες αυτό διορθώνεται εύκολα αρκεί να βγάλουμε κοινό παράγοντα τον αντίθετο από αυτό που βγάλαμε. Δείτε το χ3 – χ2 – 2χ +2=χ2(χ-1)+2(-χ+1). Οι παρενθέσεις είναι αντίθετες, το διορθώνω είτε βγάζοντας κοινό παράγοντα στη πρώτη ομάδα το – χ2 αντί για το χ2 είτε το -2 στη δεύτερη ομάδα αντί γιά το 2 κι έτσι θα έχουμε χ3 – χ2 – 2χ +2=χ2(χ-1)+2(-χ+1)=χ2(χ-1) – 2(χ-1)=(χ-1)(χ2 – 2).
[/su_tab]
[su_tab title=»Ταυτότητες»]
Αν τελικά είμαστε πολύ «άτυχοι» και οι δύο προηγούμενοι τρόποι δεν μπορούν να εφαρμοστούν ελέγχουμε μήπως στην παράσταση υπάρχουν ταυτότητες που μπορούμε να χρησιμοποιήσουμε. Πιο συγκεκριμένα οι ταυτότητες που πιθανόν να υπάρχουν είναι αυτές που διδαχθήκαμε φέτος, δηλαδή οι:
άθροισμα ή διαφορά στο τετράγωνο
(1)
άθροισμα ή διαφορά στο κύβο
(2)
διαφορά τετραγώνων
(3)
Μια ένδειξη για το ποια ταυτότητα μπορεί να υπάρχει στην παράσταση αποτελεί το πλήθος των όρων που υπάρχουν στην παράσταση.Έτσι αν υπάρχουν 2 όροι πιθανόν να έχουμε την ταυτότητα (3), αν υπάρχουν 3 όροι πιθανόν να υπάρχει η ταυτότητα (1) και τέλος με 4 όρους ίσως να «παίζει» η ταυτότητα (2). π.χ. Θέλουμε να παραγοντοποιήσουμε την παράσταση x2 – 10x+25 και κοινός παράγοντας δεν υπάρχει, σε ομάδες δεν μπορούμε να η χωρίσουμε θα ελέγξουμε την περίπτωση των ταυτοτήτων. Βλέπουμε ότι έχουμε 3 όρους οπότε υποψιαζόμαστε την ταυτότητα a2 – 2ab+b2. Παρατηρώντας την παράσταση (κι αφού ξέρω τι ψάχνω να βρω) βλέπω το x2 και το 52(=25) και γι’ αυτό το λόγο δοκιμάζω την (x – 5)2 που μου δίνει x2 – 2.x.5+52=x2 – 10x+25. Βγήκε αυτό που ελπίζαμε άρα μπορούμε τώρα να γράψουμε x2 – 10x+25=(x – 5)2.
[/su_tab]
[su_tab title=»Συνδυασμοί»]
Να σημειώσουμε εδώ ότι οι τρεις μέθοδοι που παρουσιάστηκαν προηγουμένως είναι οι συνηθέστεροι αλλά όπως αναφέραμε και πιο πάνω δεν είναι οι μοναδικοί και ότι υπάρχουν ασκήσεις που χρειάζεται να συνδυάσουμε τις παραπάνω μεθόδους ή και να αυτοσχεδιάσουμε καμιά φορά. Ας δούμε δύο τέτοιες περιπτώσεις:
π.χ.1 Για να παραγοντοποιήσω την παράσταση x2+5x+6, βλέπω ότι δεν υπάρχει κοινός παράγοντας σε ομάδες δεν χωρίζεται (γιατί έχω μόνο 3 όρους ) αλλά ούτε ταυτότητες υπάρχουν. Παρ’ όλα αυτά θα μπορούσαμε να κάνουμε ένα τέχνασμα ώστε οι όροι από 3 να γίνουν 4 κι έτσι να δουλέψω με την μέθοδο της ομαδοποίησης. Σπάω λοιπόν τον όρο 5x σε 2x+3x (επέλεξα αυτά τα νούμερα γιατί είναι «κρυμένα» μέσα στο 6 που έχω στην παράσταση, μην παραλείψετε να διαβάσετε την «Παρατήρηση» στο τέλος του άρθρου). Τώρα να δούμε τι πετύχαμε
Παρατήρηση: Το ότι επιλέξαμε να σπάσουμε το 5χ σε 2χ+3χ όπως αναφέρθηκε και παραπάνω δεν ήταν τυχαίο. Είναι μια ολόκληρη μέθοδος που την παρουσιάζει και το σχολικό βιβλίο ως η «μέθοδος τριωνύμου» που με λίγα λόγια λέει το εξής:
Όταν θέλω να μετατρέψω σε γινόμενο μια παράσταση της μορφής προσπαθώ να βρω δυο αριθμούς που αν τους προσθέσω να κάνουν Α ενώ αν τους πολλαπλασιάσω να κάνουν Γ. Αν καταφέρω να βρω αυτούς τους αριθμούς, έστω ότι αυτοί είναι ο κ και ο λ, τότε το τριώνυμο παίρνει τη μορφή . Έτσι λοιπόν στο παραπάνω παράδειγμα είχαμε:
Για το τριώνυμο αναζητούμε ένα ζευγάρι αριθμών που θα πρέπει να έχει γινόμενο ίσο με 6 και άθροισμα ίσο με 5. Πριν απαντήσουμε αμέσως ποιοι είναι αυτοί οι αριθμοί ας σκεφτούμε λίγο:
Ξεκινάμε από το γινόμενο διότι υπάρχουν λίγες απαντήσεις. Ενώ άθροισμα 5 μπορώ να σχηματίσω με άπειρα ζευγάρια ακεραίων (π.χ. (2,3) , (6,-1) , (100,-95) κ.α.) , γινόμενο 6 μπορώ να σχηματίσω μόνο με τους: (1,6) , (2,3) , (-1,-6) και (-2,-3).
Από τα παραπάνω ζευγάρια μόνο το ζευγάρι 2 και 3 πληροί τις προϋποθέσεις που έχουμε αφού το άθροισμά τους είναι 5 το δε γινόμενό τους είναι 6.
Άρα έχουμε
Τα παραπάνω μπορούμε να τα τακτοποιήσουμε και σε ένα πινακάκι ως εξής:
κ
λ
Γινόμενο = +6
Άθροισμα = +5
+1
+6
+6
+7
+2
+3
+6
+5
-1
-6
+6
-7
-2
-3
+6
-5
Αυτή τη μέθοδο την παρουσιάζουμε εδώ συνοπτικά και δεν χρειάζεται να επιμείνουμε άλλο γιατί σε μερικά μαθήματα παρακάτω θα μάθουμε μια άλλη μέθοδο παραγοντοποίησης του τριωνύμου η οποία δεν παρουσιάζει τους περιορισμούς που παρουσιάζει αυτή η μέθοδος (όπως για παράδειγμα ότι εφαρμόζεται μόνο στην περίπτωση που ο συντελεστής του x2 είναι 1)
π.χ.2 Έστω ότι θέλω να παραγοντοποιήσω την παράσταση x4 -x3+x2 – 1. Αφού δεν υπάρχει κοινός παράγοντας πάμε για ομαδοποίηση με x4 – x3 τη μια ομάδα (που έχει κοινό παράγοντα το x3) και x2 – 1 την άλλη ομάδα που δεν έχει κοινό παράγοντα αλλά είναι ταυτότητα x2 – 1=(x – 1)(x+1). Άρα θα έχω
[/su_tab]
[su_tab title=»plus»]
Αφού είδαμε κάθε μια μέθοδο χωριστά ίσως θα ήταν καλύτερα τώρα να βλέπαμε την παραγοντοποίηση και με μια άλλη ματιά. Πιο πάνω στο άρθρο αυτό αναφέραμε ότι για να παραγοντοποιήσουμε μια αλγεβρική παράσταση ελέγχουμε με τη σειρά: ΚΟΙΝΟ ΠΑΡΑΓΟΝΤΑ >> ΟΜΑΔΕΣ >> ΤΑΥΤΟΤΗΤΕΣ >> ΤΡΙΩΝΥΜΟ. Όμως από τους όρους που έχει αυτή η αλγεβρική παράσταση κάποιες από τις παραπάνω μεθόδους θα μπορούσαν να αποκλειστούν (π.χ. με 2 όρους δεν μπορείς να κάνεις ομαδοποίηση). Έτσι θα μπορούσαμε να σκεφτόμαστε κι ως εξής:
Τριγωνομετρική εξίσωση λέγεται η εξίσωση στην οποία ο άγνωστος είναι «φυλακισμένος» μέσα σε κάποιο τριγωνομετρικό αριθμό. Οι τριγωνομετρικές εξισώσεις (λόγω της περιοδικότητας που παρουσιάζουν οι τριγωνομετρικές συναρτήσεις) έχουν άπειρες λύσεις που χωρίζονται σε δύο ομάδες. Για να μπορέσουμε να λύσουμε τριγωνομετρικές εξισώσεις θα πρέπει να ελευθερώσουμε τον άγνωστο μέσα από τον τριγωνομετρικό αριθμό, για να το πετύχουμε αυτό ακολουθούμε τα παρακάτω βήματα:
Βήμα 10
Απομονώνουμε τον τριγωνομετρικό αριθμό που περιέχει τον άγνωστο στο ένα μέλος.
Βήμα 20
Βρίσκουμε μια «αρχική λύση» για την εξίσωσή μας, δηλαδή μια γωνία από 0ο εως 360ο που να ικανοποιεί την εξίσωση.
Βήμα 30
Χρησιμοποιούμε τους παρακάτω τύπους λύσεων, ανάλογα με την περίπτωση:
Τύποι λύσεων για τριγωνομετρικές εξισώσεις
Εξίσωση
Λύσεις ( )
ή
Ας δούμε κι ένα παράδειγμα για να καταλάβουμε καλύτερα τη διαδικασία επίλυσης μιας τριγωνομετρικής εξίσωσης:
Άσκηση: Να λυθεί η εξίσωση
Λύση:
Βήμα 10: απομονώνουμε το συνημίτονο (το θεωρούμε ως άγνωστο, χωρίζουμε γνωστούς από άγνωστους και διαιρούμε με το συντελεστή του άγνωστου)
Βήμα 20: Βρίσκουμε μια γωνία στο διάστημα [0 – 2π] που να ικανοποιεί την εξίσωση αυτή.
Η γωνία π/3 έχει συνημίτονο ίσο με 1/2, δηλαδή
και
άρα ισχύει
Βήμα 3ο: Από τους τύπους των λύσεων παίρνω,
ή με
Περισσότερες λυμένες ασκήσεις μπορείτε να βρείτε εδώ.
Έχουμε δει σε προηγούμενο άρθρο ότι εξίσωση είναι μια ισότητα που περιέχει τουλάχιστον έναν άγνωστο. Αν όμως ο άγνωστος είναι «φυλακισμένος» μέσα σε κάποιο τριγωνομετρικό αριθμό (ημίτονο, συνημίτονο, εφαπτομένη ή συνεφαπτομένη) τότε έχουμε μια ειδική κατηγορία εξισώσεων που λέγονται τριγωνομετρικές εξισώσεις. Παράδειγμα η εξίσωση και η είναι τριγωνομετρικές εξισώσεις αφού το x είναι κλεισμένο μέσα σε τριγωνομετρικό αριθμό, ενώ η εξίσωση δεν είναι γιατί παρότι υπάρχει ενας τριγωνομετρικός αριθμός, ο άγνωστος x κυκλοφορεί ελύθερος.
Παράδειγμα
Μια τριγωνομετρική εξίσωση όπως η μας ρωτάει: «ποια γωνία έχει ημίτονο ίσο με 1/2;» Η πρώτη γωνία που μας έρχεται στο μυαλό είναι η π/6 (=30ο). Είναι όμως η μοναδική γωνία που έχει ημίτονο ισο με 1/2; Η απάντηση αν το σκεφτούμε λίγο είναι προφανώς όχι αφού εκτός από τη γωνία π/6 και η γωνία π-π/6 (=5π/6=150ο) ,που είναι η παραπληρωματική της π/6, έχει ημίτονο ίσο με 1/2. Θυμηθείτε ότι οι παραπληρωματικές γωνίες έχουν ίδιο ημίτονο ( το μάθαμε στο Γυμνάσιο ) πράγμα που φαίνεται από τον τριγωνομετρικό κύκλο (ρίξτε μια ματιά στην εικόνα) αλλά και από τη γραφική παράσταση του ημιτόνου. Αλλά κι όλες οι γωνίες που (ανεξαρτήτως πόσες στροφές έχουμε κάνει στον τριγωνομετρικό κύκλο) καταλήγουν στο π/6 ή στο π-π/6, έχουν κι αυτές ημίτονο ίσο με 1/2.
Δηλαδή
0 στροφές+π/6
1 στροφή+π/6
2 στροφές+π/6
3 στροφές+π/6
k στροφές +π/6
χ
π/6
2π+π/6
2(2π)+π/6
3(2π)+π/6
k(2π)+π/6
ημχ
1/2
1/2
1/2
1/2
1/2
0 στροφές+(π-π/6)
1 στροφή+(π-π/6)
2 στροφές+(π-π/6)
3 στροφές+(π-π/6)
k στροφές +(π-π/6)
χ
(π-π/6)
2π+(π-π/6)
2(2π)+(π-π/6)
3(2π)+(π-π/6)
k(2π)+(π-π/6)
ημχ
1/2
1/2
1/2
1/2
1/2
Βλέπουμε λοιπόν ότι υπάρχουν άπειρες γωνίες με ημίτονο 1/2, χωρισμένες σε δύο ομάδες, αυτές που καταλήγουν στο π/6 και αυτές που καταλήγουν στο (π-π/6), ‘ετσι αν θέλαμε να τις γράψουμε όλες αναλυτικά δεν θα μπορούσαμε. Μπορούμε όμως να τις περιγράψουμε και να πούμε ότι: χ=2kπ+π/6 ή χ=2kπ+(π-π/6), όπου το k είναι ακέραιος αριθμός (στην πραγματικότητα το k είναι «μετρητής στροφών» ,
για k=0 παίρνουμε τις γωνίες π/6 και π-π/6=5π/6,
για k=1 εχουμε κάνει μια στροφή και έχουμε καταλήξει στα σημεία π/6 και π-π/6 άρα έχουμε τις γωνίες 2π+π/6 και 2π+(π-π/6)=2π+5π/6 κ.ο.κ. δηλαδή
k=-2
k=-1
k=0
k=1
k=2
χ
-4π+π/6
-2π+π/6
π/6
2π+π/6
4π+π/6
-4π+5π/6
-2π+5π/6
5π/6
2π+5π/6
4π+5π/6
Γενίκευση
Μην ξεχνάτε ότι μέχρι εδώ ασχοληθήκαμε μόνο με ένα παράδειγμα, δηλαδή λύναμε την τριγωνομετρική εξίσωση . Τώρα ήρθε η ώρα να το γενικεύσουμε λίγο: Αν είχαμε να λύσουμε μια εξίσωση της μορφής
θα έπρεπε να βρούμε μια γωνία από τον πρώτο κύκλο που να ικανοποιούσε αυτή την ισότητα (μια αρχική λύση ας πούμε), δηλαδή να βρούμε μια γωνία που να έχει ημίτονο ίσο με α. Έστω ότι την βρήκαμε κι η γωνία αυτή είναι η θ (πρέπει δηλαδή να ισχύει ημθ=α), τότε
Κάθε φορά που ξεκινάω να διδάξω τις ταυτότητες, βλέπω τους μαθητές να τις αντιμετωπίζουν με φόβο, ίσως και τρόμο, πριν καλά καλά τις δουν. Ακούω επιφωνήματα του στυλ «Αχ», «ΩΩΩχχ», «γιατί μας βασανίζετε κύριε» κτλ. Κι αναρωτιέμαι γιατί αυτή η αντιμετώπιση σε ένα αντικείμενο που είναι τόσο εύκολο μα και τόσο χρήσιμο. Οι ταυτότητες μας «λύνουν τα χέρια» σε πάρα πολλές περιπτώσεις που θέλουμε να κάνουμε πράξεις που με τον κλασσικό τρόπο ( την επιμεριστική ιδιότητα δηλαδή) θα θέλαμε περισσότερο χρόνο, περισσότερες πράξεις και φυσικά με μεγαλύτερη πιθανότητα να κάνουμε λάθος. Έχοντας αυτό το εργαλείο στα χέρια μας αποφεύγουμε τις πράξεις και περνάμε κατ’ ευθείαν στο αποτέλεσμα. Μάλιστα πολλές φορές έχω ακούσει την έκφραση «αφού μπορώ να κάνω επιμεριστική και να βρω το αποτέλεσμα γιατί θα πρέπει να μάθω κάτι καινούργιο;» και αμέσως θυμάμαι τις παλίες νοικοκυρές που αγόρασαν για πρώτη φορά πλυντήριο ( γιατί το απαιτούσαν οι καιροί ) αλλά το χρησιμοποιούσαν για να βάζουν επάνω τη σκάφη και να πλένουν με τον παραδοσιακό τρόπο με τη δικαιολογία ότι αυτά είναι λευκά ή ευαίσθητα και το πλυντήριο θα μου τα χαλάσει. Continue reading «Βοήθειααα … οι Ταυτότητες!!!»
Πριν ξεκινήσουμε να πούμε τι είναι η αλγεβρική παράσταση καλό θα ήταν να δούμε πρώτα τι είναι η αριθμητική παράσταση.
Αριθμητική παράσταση
Μία παράσταση που αποτελείται από αριθμούς οι οποίοι συνδέονται μεταξύ τους με τα σύμβολα των πράξεων (πρόσθεση, αφαίρεση, πολλαπλασιασμό, δύναμη και πιθανόν παρένθεση), ονομάζεται αριθμητική παράσταση.
Έτσι αριθμητικές παραστάσεις είναι και οι: ,
Όταν σε μια αριθμητική παράσταση εκτελέσουμε τις πράξεις προκύπτει ένας και μοναδικός αριθμός που λέγεται τιμή της αριθμητικής παράστασης. Στα δύο προηγούμενα παραδείγματα έχουμε:
και (Σχόλιο)
Αλγεβρική παράσταση
Όταν όμως σε μια παράσταση εκτός από αριθμούς υπάρχουν και μεταβλητές (γράμματα δηλαδή που παριστάνουν αριθμούς) που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων, τότε λέμε ότι έχουμε μια αλγεβρική παράσταση. Για παράδειγμα, αλγεβρικές παραστάσεις είναι οι
, ,
Στις αλγεβρικές παραστάσεις μπορούμε να αντικαταστήσουμε τα γράμματα με διάφορους αριθμούς (γι’ αυτό το λόγο λέγονται και μεταβλητές). Όταν σε μια αλγεβρική παράσταση αντικαταστήσουμε τα γράμματα που περιέχει με κάποιους αριθμούς αυτό που θα προκύψει θα είναι μια αριθμητική παράσταση, κι αν στη συνέχεια εκτελέσουμε και τις πράξεις θα καταλήξουμε να έχουμε έναν αριθμό.
Έτσι αν στην αλγεβρική παράσταση αντικαταστήσουμε το x με τον αριθμό 3, θα έχουμε . Ο αριθμός 7 λέγεται τιμή της παράστασης για x=3. Πιο καλά διαβάζουμε ως εξής: Η τιμή της παράστασης για x=3 είναι 7.
Με παρόμοιο τρόπο βρίσκουμε ότι η τιμή της παράστασης
για x=1 και y=2 είναι
ενώ η τιμή της
για χ=-4 είναι
Δείτε εδώ βίντεο με θέμα τις αλγεβρικές παραστάσεις
_________________________________
Σχόλιο: Θυμηθείτε τη σειρά με την οποία πρέπει να κάνουμε τις πράξεις
Δυνάμεις
Πολλαπλασιασμοί – Διαιρέσεις
Προσθέσεις – αφαιρέσεις
Στην περίπτωση που υπάρχουν παρενθέσεις ξεκινάμε τις πράξεις μέσα από τις παρενθέσεις αλλά και πάλι με την προηγούμενη σειρά.
Μπορείτε να εντυπωσιάσετε φίλους και συμμαθητές με ένα εύκολο «μαγικό» κόλπο που θα δούμε στο σημερινό μας άρθρο. Πιστεύω να γνωρίζετε ότι πολλά από αυτά τα «μαγικά» δεν είναι τίποτ’ άλλο από εφαρμογές της θεωρίας που μαθαίνουμε στο σχολείο στα διάφορα μαθήματα (Μαθηματικά, Φυσική, Χημεία κ.α.). Ειδικά το σημερινό μας «μαγικό» το μόνο που προϋποθέτει για να μπορέσει να το κάνει κάποιος είναι η πράξη της αφαίρεσης που μάθαμε στο Δημοτικό, ενώ για να το εξηγήσει είναι αρκετά τα κριτήρια διαιρετότητας που μαθαίνουμε ήδη από την Α΄ Γυμνασίου.
Εξίσωση 2ου βαθμού (ή δευτεροβάθμια εξίσωση) είναι η εξίσωση που περιέχει έναν άγνωστο (π.χ. τον x) και έχει ή μπορεί να πάρει τη μορφή με .
Όταν μας δώσουν μια εξίσωση για να βρούμε τις λύσεις της και δεν είναι στη παραπάνω μορφή δεν γνωρίζουμε αν πράγματι είναι δευτεροβάθμια εξίσωση ή όχι. Γι’ αυτό είμαστε υποχρεωμένοι να κάνουμε κάποια «προεργασία» ώστε να είμαστε σε θέση να αντιληφθούμε το βαθμό της εξίσωσης και κατόπιν να ψάξουμε να βρούμε τις λύσεις. Γιατί με άλλο τρόπο δουλεύουμε στις εξισώσεις πρώτου βαθμού, με άλλο σε αυτές που είναι δεύτερου βαθμού, διαφορετικά στις τριτοβάθμιες κ.ο.κ. Όσον αφορά στις πρωτοβάθμιες εξισώσεις έχουμε δώσει τη μεθοδολογία εδώ.
Η «προεργασία» λοιπόν που πρέπει να γίνει είναι ήδη γνωστή, θα πρέπει:
(πολλαπλασιάζοντας όλους τους όρους με το ΕΚΠ των παρονομαστών)
να διώξουμε τις παρενθέσεις
(με χρήση της επιμεριστικής ιδιότητας) και τέλος
να κάνουμε αναγωγή όμοιων όρων
(να «συμμαζέψουμε» την εξίσωση προσθέτοντας μεταξύ τους τους όμοιους όρους)
Σε αυτό το σημείο είμαστε σε θέση να δούμε το βαθμό της εξίσωσης και αν
ο άγνωστος δεν είναι υψωμένος σε καμία δύναμη, τότε έχουμε να λύσουμε μια πρωτοβάθμια εξίσωση κατά τα γνωστά (χωρίζουμε γνωστούς – άγνωστους κ.τ.λ.)
η μεγαλύτερη δύναμη στην οποία εμφανίζεται ο άγνωστος είναι το τετράγωνο, τότε είμαστε στη περίπτωση της δευτεροβάθμιας εξίσωσης και η διαδικασία που ακολουθούμε για να βρούμε τις λύσεις είναι η παρακάτω:
Μεταφέρουμε όλους τους όρους στο ένα μέλος ώστε η εξίσωση να πάρει τη μορφή
Ξεκαθαρίζουμε ποιοι αριθμοί παίζουν το ρόλο των α, β και γ (α: ο συντελεστής του χ2, β: ο συντελεστής του χ και γ ο σταθερός όρος).
Με τη βοήθεια των α, β, γ και του τύπου
υπολογίζουμε ένα νέο αριθμό τον Δ που λέγεται «Διακρίνουσα» (διάβασε το Σχόλιο1 παρακάτω)
Από το «είδος» αυτού του αριθμού, του Δ, εξαρτάται κα το πως θα προχωρήσουμε παρακάτω. Και πιο συγκεκριμένα:
αν η Διακρίνουσα (Δ) είναι αρνητικός αριθμός, τότε η εξίσωση μας δεν έχει λύσεις, είναι όπως λέμε σε τέτοιες περιπτώσεις αδύνατη
αν η Διακρίνουσα (Δ) είναι θετικός αριθμός, τότε η εξίσωση έχει 2 λύσεις διαφορετικές μεταξύ τους και που τις υπολογίζουμε από τους τύπους
αν η Διακρίνουσα (Δ) είναι ίση με 0, τότε η εξίσωση έχει δύο ίσες λύσεις (ή όπως συνήθως λέμε μια διπλή λύση) που μπορούμε να υπολογίσουμε από τον τύπο
Συνοπτικά η διαδικασία που ακολουθούμε ώστε να βρούμε τις λύσεις σε μια εξίσωση της μορφής
καθώς και οι περιπτώσεις που μπορούν να προκύψουν φαίνονται στο σχήμα που ακολουθεί:
Λυμένα παραδείγματα για να κατανοήσουμε καλύτερα αυτά που αναφέραμε θα δείτε στο επόμενο άρθρο.
Σχόλιο1:
Η παράσταση συμβολίζεται με Δ και λέγεται «Διακρίνουσα». Η ονομασία δεν είναι τυχαία γιατί η διακρίνουσα μας βοηθάει να διακρίνουμε το πλήθος των ριζών (λύσεων) της εξίσωσης. Πράγματι,
Στην πραγματικότητα ο τύπος αυτός δεν είναι κάποιος νέος τύπος που πρέπει να απομνημονεύσουμε αρκεί να ξέρουμε απ’ έξω τον προηγούμενο τύπο αφού από εκεί προκύπτει και αυτός μόνο που τώρα το Δ είναι 0. Πράγματι,
Μεθοδολογία επίλυσης εξίσωσης 1ου βαθμού και λυμένο παράδειγμα.
Κατ’ αρχάς να ξεκινήσουμε από τον τίτλο του άρθρου που είναι λάθος, γιατί αυτό που θα δούμε σ αυτή τη δημοσίευση είναι η διαδικασία που ακολουθούμε ώστε να βρούμε τη λύση μιας εξίσωσης 1ου βαθμού και αυτή (η διαδικασία) λέγεται επίλυση κι όχι λύση (το τι είναι λύση το έχουμε γράψει εδώ).
Ας δούμε λοιπόν ποια βήματα πρέπει να ακολουθούμε ώστε να βρίσκουμε σε οποιαδήποτε εξίσωση 1ου βαθμού, αν έχει λύση και ποια είναι αυτή ή αν δεν έχει λύσεις (αδύνατη). Σκοπός μας είναι μέσα από τη διαδικασία που θα ακολουθήσουμε, σε οποιαδήποτε πρωτοβάθμια εξίσωση κι αν μας έχει δοθεί, να καταλήξουμε στη πιό απλή μορφή εξίσωσης που υπάρχει και είναι αυτή:
, όπου το και το μπορεί να είναι οποιοσδήποτε αριθμός
Με τέσσερα απλά βήματα (στη χειρότερη περίπτωση) μπορούμε να καταλήξουμε στη μορφή . Τα βήματα είναι τα παρακάτω που θα τα δούμε λύνοντας ταυτόχρονα κι ένα παράδειγμα: